# Lepidium sativum extract targets DNA repair pathways in colorectal cancer: In silico ADMET analysis of active compounds

Maram A. Bin Watyan<sup>1,2</sup>, Abdullah AlAmri<sup>1</sup>, Ramesa Shafi Bhat<sup>3\*</sup>, Sara O. Alghamedi<sup>1</sup>, Mohammed AlZahrani<sup>4</sup>, Jilani Shaik<sup>1</sup>, Arwa Ishaq Khayyat<sup>1</sup>, Sooad AlDaihan<sup>1\*</sup>, Mohammed Alanazi<sup>1</sup>

<sup>1</sup>Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia

<sup>2</sup>Saudi Food and Drug Authority, Riyadh, Saudi Arabia

<sup>3</sup>Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia <sup>4</sup>Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia

\*Corresponding authors' emails: rbhat@ksu.edu.sa; sdaihan@ksu.edu.sa Received: 01 May 2025 / Accepted: 20 August 2025 / Published Online: 11 September 2025

### **Abstract**

Lepidium sativum has been used traditionally to treat a variety of ailments because of its potential pharmacological properties, however, its impact on the growth and differentiation of colorectal cancer cells is still not well understood. Antiproliferative properties of *L. sativum* leaf extract, was investigated. The MTT assay was performed, followed by the RT2 Profiler PCR Array to analyze the expression of 84 human DNA damage and repair pathway genes in two human colorectal cancer cell lines, HCT116 and SW620, after exposure to L. sativum extracts. The results showed a dose-dependent reduction in cell viability for HCT116 and SW620 cells following treatment with L. sativum extract. PCR array analysis of the 84 DNA repair genes revealed valuable insights into cellular responses and mechanisms behind the non-conventional treatments of cancer cells. RT-PCR analysis confirmed significant modulation of DNA damage response (DDR) genes, including increased expression of apoptosis-related genes DDIT3 and GADD45G, alongside decreased expression of the repair gene MPG. Gas chromatography-mass spectrometry analysis identified 10 compounds with promising pharmacokinetic properties and a favorable ADMET profile, in line with Lipinski's Rule of Five. This study suggests that *L. sativum* extract induces apoptosis in colorectal cancer cells, supporting its potential as a therapeutic agent in cancer treatment.

Keywords: Lepidium sativum, Colorectal cancer, RT2 profiler PCR array, HCT116, SW620

# How to cite this article:

Bin Watyan MA, AlAmri A, Bhat RS, Alghamedi SO, AlZahrani M, Shaik J, Khayyat AI, AlDaihan S and Alanazi M. *Lepidium sativum* extract targets DNA repair pathways in colorectal cancer: In silico ADMET analysis of active compounds. Asian J. Agric. Biol. 2025: e2025052. DOI: https://doi.org/10.35495/ajab.2025.052

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Introduction

Lepidium sativum L., a widely distributed herb used in culinary and traditional medicinal practices, has garnered attention for its diverse biological activities ( Hekmatshoar et al., 2022). Research conducted in laboratory and animal models has demonstrated its potential in providing antimicrobial, antidiabetic, antioxidant, antidiarrheal, anticancer, and other health benefits (Painuli et al., 2022). Belonging to the Brassicaceae family with the common name Garden cress, L. sativum L. is a widely cultivated edible herb found in many regions across the globe (Manohar et al., 2012). It is an herbaceous annual plant with white flowers and a height ranging from 15 to 45 cm (Agafarini et al., 2019). Due to its nutritional value, it has been used for various health issues for ages. The seeds are rich in antioxidants like tocopherol, phenols, terpenoids, and vitamin E (Gupta and Gupta, 2023). It also contains a sulfur-containing compound called glucosinolate, known for anti-proliferative activity against certain carcinoma cell lines by inducing mitochondrial-mediated apoptosis through generation of reactive oxygen species (ROS) (Miękus et al., 2020; Yang et al., 2023)

Cancer is one of the main causes of death all over the world, according to International Agency for Research on Cancer (IARC) reported 20 million new cases of cancer in the year 2022 which can reach upto 35 million by 2050. Agency estimated one in five men or women developing cancer in a lifetime (Jia et al., 2025). Globally 50.2% colorectal cancers are reported from Asia in 2022, with 967 thousand new cases and 462 thousand deaths with higher incidence rates in younges and males. Chemotherapy is used as a primary treatment for cancer but has lot of side effects reliant on the patient and the drugs used (Satiamurthy et al., 2025). Lot of challenges due to side effects of chemotherapy with major health risks, encourages interest in natural therapy remedies (Samuel et al., 2021; Nurgali et al., 2018; Anand et al., 2022). L. sativum, used as a natural remedy by ancient civilizations, is emerging with promising results against cancer (Huang et al., 2024). Aqueous extract of L. sativum is reported to induce apoptosis in a breast cancer cell line (MCF-7) (Mahassni and Al-Reemi, 2013). L. sativum extract extended the lifespan of rodent models of Ehrlich ascites carcinoma (EAC) by reducing liver enzyme and malondialdehyde levels, and increasing glutathione peroxidase activity, indicating antioxidant effects of this herb (El Sayed et al., 2020). Also, methanolic extract of *L. sativum* is reported to trigger apoptosis in human cell lines such as peripheral lymphocytes, colon cancer, and endometrial cancer cell lines, in a dose-dependent manner, with remarkable antioxidant activity due to the presence of high phenolic and flavonoid compounds in the extract (Selek et al., 2018). Its aqueous leaf extracts inhibit the growth of human tongue squamous carcinoma cells by inducing apoptosis and DNA damage by generating reactive oxygen species (ROS) in mitochondria (AlObaidi, 2014; Jahani et al., 2020). Hydroalcoholic extracts of *L. sativum* are also reported with cytotoxicity on HeLa and K562 cell lines, suggesting its potential in cancer treatment (Aslani et al., 2014).

The effect of *L. sativum* on the proliferation and differentiation of colorectal cancer cells is not fully explained. In this study, two human colorectal cell lines (HCT116 and SW620) were treated against *L. sativum* extract and then analyzed through RT2 Profiler PCR Array for 84 genes involved in the human DNA damage and repair pathway.

#### **Material and Methods**

# Collection of medicinal plants, crude extracts, and fractions preparation

L. sativum seeds were taken from natural farms in southern Saudi Arabia that were not exposed to chemicals or chemical fertilizers. The seeds were dried and ground into a fine powder. This powder was then used to prepare extracts with ethyl acetate. An 80g of seed powdered were extracted in 400 mL of ethyl acetate within a Soxhlet extraction apparatus. Ethyl acetate has ideal solvency properties for many compounds and is safe to handle. After the extraction, the extract centrifuged at 4500 rpm for 10 minutes, then a rotary evaporator was used to concentrate the extract 45°C stored at -84°C until required for further analysis.

#### Cell culture

The study included two distinct types of human colorectal cancer cell lines: HCT116 and SW620.

# MTT assay

In vitro, cytotoxic activity of *L. sativum* extract was conducted using the MTT assay.

Cell viability (%) was calculated using the formula: (O.D of the treated sample) / (O.D of the untreated sample)  $\times$  100%.

In each well of a 24-well plate, cell suspension (5 X 10^4 cells/mL) was seeded and incubated at 37°C for 24 hours in a 5% CO2 incubator. Various concentrations (50, 125, 250, 500 μg/mL) of *L. sativum* extract were used to test the cytotoxic activity by adding MTT solution and incubated at 37°C for 24 hours and read at 545 nm. Wells containing untreated cells serving as controls and IC50 was determined.

### Cell line treatment

The cell lines were treated with the IC50 of L. sativum extract. The concentration of the extract was  $80 \,\mu\text{g/mL}$  for the HCT116 cell line and  $98.9 \,\mu\text{g/mL}$  for the SW620 cell line.

# RNA isolation and assessment of gene expression via RT-qPCR

Total RNA extracted from HCT116 and SW620 cell and used to synthesize cDNA was synthesized using a reverse transcription kit (without RNase inhibitor) from Applied Biosystems, USA and stored at -20°C until further use.

# **PCR** array

The Human DNA Damage Signaling Pathway RT<sup>2</sup> Profiler<sup>TM</sup> PCR Array (PAHS-029Z, Qiagen, USA) was employed to screen a panel of 84 genes representative of the human DNA damage and repair pathway by using specific primers and 5 housekeeping genes were used for normalization.

## Gene expression

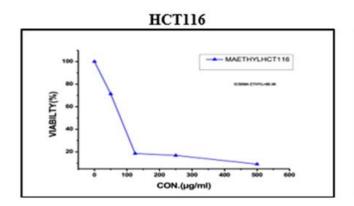
Real-time PCR was used to check the effect of *L. sativum* on expression levels of genes involved in DNA repair signaling pathways. The expression of DNA repair genes was normalized by using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression as an endogenous control.

# Gas Chromatography Mass Spectrometry analysis

Gas Chromatography Mass Spectrometry analysis of the *L. sativum* extract was conducted on Thermo GC-Trace Ultra Thermo MS DSQ II.

# In silico prediction of toxicological properties

SwissADME and AdmetSAR were used to identified compounds pharmacokinetic properties, or drug-like characteristics.


# Statistical analysis

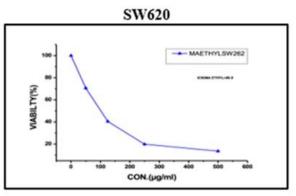
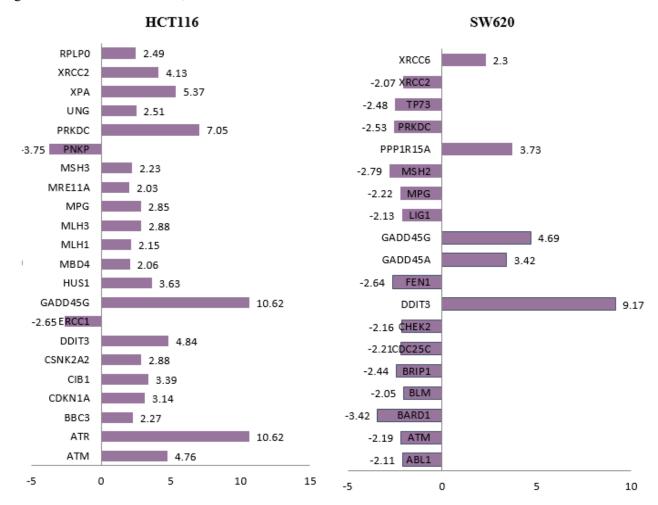
GraphPad Prism® 9.0 and Microsoft Excel® were used for stastistic analysis. The Ct values were processed using the data analysis portal (Geneglobe, Qiagen). These Ct values were then converted to fold changes relative to the untreated control group, and the  $2-\Delta\Delta$ Ct method was applied to calculate the fold changes in the treated groups.

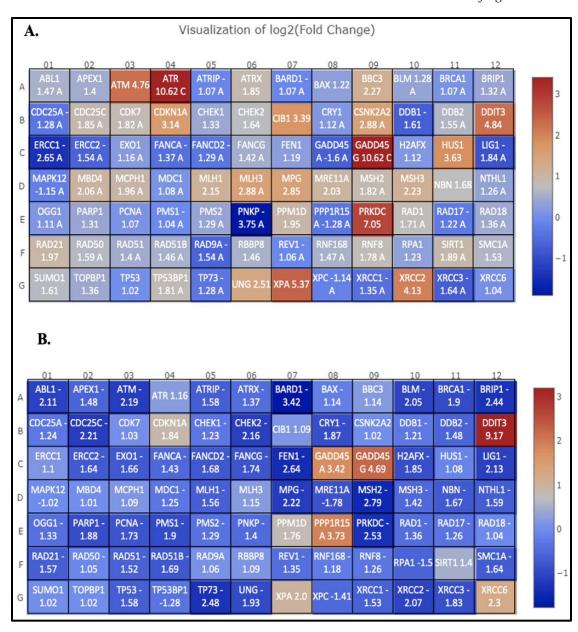
#### **Results**

# Cytotoxic activity of L. sativum

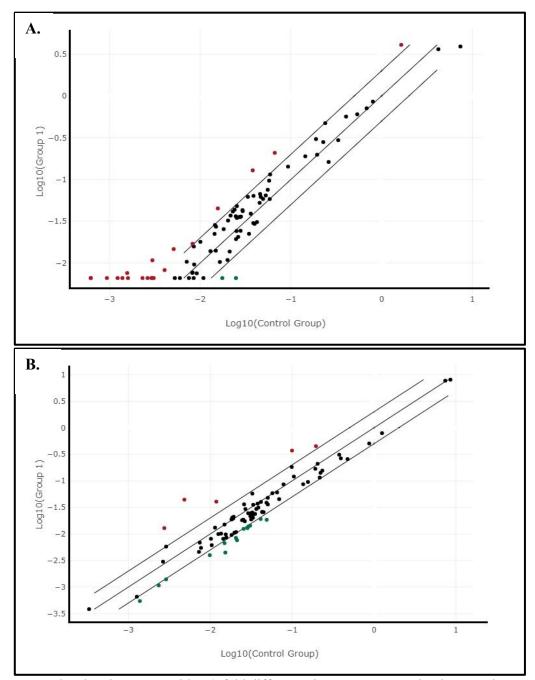
The impact of LS on the viability of HCT116 and SW620 cells following a 24-hour treatment is illustrated in Figures 1. It was observed that the anti-proliferative effect of LS on HCT116 cells was more pronounced compared to SW620 cells.





Figure-1. Cell viability colon cancer cell lines following treatment with serial dilution of L. sa-tivum.

# RT2 profiler PCR array


After treating with L. sativum extract, gene expression analysis revealed notable alterations in DDR gene expression (fold change >2 or <-2) in both the HCT116 and SW620 cell lines. Figure 2 presents the expression profiles of the 84 genes linked to DNA repair pathways in colon cancer cells before and after treatment with L. sativum extract at concentrations of 80 μg/ml and 98.9 μg/ml. Heat map analysis, shown in Figure 3, illustrates the differential expression of DDR genes in the two cell lines. The heat maps clearly display varying expression patterns, with red squares representing up-regulated genes, blue squares denoting down-regulated genes, and gray squares indicating genes with no significant change. Notably, certain DNA repair genes were significantly upregulated in the HCT-116 cells, while the SW620 cells displayed a more diverse range of both up- and downregulated genes, suggesting a cell line-specific response to L. sativum treatment. To further explore the changes induced by treatment, scatter plot analyses were conducted, as shown in Figure 4. Genes with a greater than two-fold difference in mRNA expression compared to the control were highlighted. In the scatter plots, red circles indicate up-regulated genes, black circles represent down-regulated genes, and green circles show genes with no significant change. The analysis indicated a higher proportion of upregulated genes in the HCT-116 cells, while the SW620 cells exhibited a more balanced distribution of both increases and decreases in gene expression. reflecting distinct molecular responses between the two cell lines.



**Figure-2.** The gene expression results revealed differential expression transcript of DDR genes (fold change >2 or <-2) in *the* HCT116 *and* in SW620 cell line.



**Figure-3.** Heat map showing altered expressions of DNA repair genes in A. HCT-116 and B. SW620 cells. Red, gray and blue squares indicate up-regulated genes, non-regulated and down-regulated genes, respectively.



**Figure-4.** Scatter plot showing genes with > 2-fold difference in mRNA expression in treated A. HCT-116 and B. SW620 cells respectively compared to control. Red, black, and green circles indicate up-regulated genes, down-regulated genes, and non-regulated genes, respectively.

Following treatment with *L. sativum*, the expression levels of six transcripts were found to be elevated in HCT116 cells: ATM by 4.76-fold, DDIT3 by 4.84-fold, GADD45G by 10.62-fold, MPG by 2.85-fold, PRKDC by 7.75-fold, and XRCC2 by 4.13-fold. Conversely, in SW620 cells, DDIT3 was upregulated by 9.17-fold and GADD45G by 4.69-fold, while

ATM, MPG, PRKDC, and XRCC2 were downregulated by -2.19-fold, -2.22-fold, -2.53-fold, and -2.07-fold respectively. Overall, there were six upregulated genes observed in the HCT116 cell line, while in the SW620 cell line, two genes were downregulated and four genes were upregulated as shown in Table 1.

**Table-1.** Changes in gene expression levels were observed in both cell lines following 24 hours of treatment with *L. sativum* extract, as indicated by fold change analysis.

| Cell Lines | Symbol  | Refseq    | Fold Change Regulation |  |  |
|------------|---------|-----------|------------------------|--|--|
| HCT116     | ATM     | NM 000051 | 4.76                   |  |  |
| SW620      |         | _         | -2.19                  |  |  |
| HCT116     | DDIT3   | NM 004083 | 4.84                   |  |  |
| SW620      |         | _         | 9.17                   |  |  |
| HCT116     | GADD45G | NM 006705 | 10.62                  |  |  |
| SW620      |         | _         | 4.69                   |  |  |
| HCT116     | MPG     | NM 002434 | 2.85                   |  |  |
| SW620      |         | _         | -2.22                  |  |  |
| HCT116     | PRKDC   | NM 002434 | 7.05                   |  |  |
| SW620      |         | _         | -2.53                  |  |  |
| HCT116     | XRCC2   | NM 005431 | 4.13                   |  |  |
| SW620      |         | _         | -2.07                  |  |  |

To validate the observed upregulation and downregulation identified through PCR array analysis, we conducted RT-PCR assays to measure the mRNA levels of the six genes associated with DNA Damage and Repair pathways in both HCT-116 and SW620

cell lines. Specific primers listed in Table 2 were utilized for this purpose. Additionally, we examined the expression of the human GAPDH gene from the same RNA samples to facilitate quantification and normalization procedures.

Table-2. List of Primers.

| Genes   | Forward primer          | Reverse primer           |
|---------|-------------------------|--------------------------|
| ATM     | 5`-TGCGTGGCTAACGGAGAAAA | 5`-ATCACTGTCACTGCACTCGG  |
| DDIT3   | 5`-TCCAACTGCAGAGATGGCAG | 5`-TCCTCCTCTTCCTCCTGAGC  |
| GADD45G | 5`-ACTAGCTGCTGGTTGATCGC | 5`-TCCACGTTCAAGACTTTGGCT |
| MPG     | 5`-TCGAGTGTGTCAGGGTGTTT | 5`-CTAGCTGGTCGCTGCTTCTT  |
| PRKDC   | 5`-CAAGCGCATCATCATCCGTG | 5`-GTAAGCCGCCTTCTCCTCTT  |
| XRCC2   | 5`-TGGATAGACCGCGTCAATGG | 5`-TCCACATCACACAGTCGTCG  |

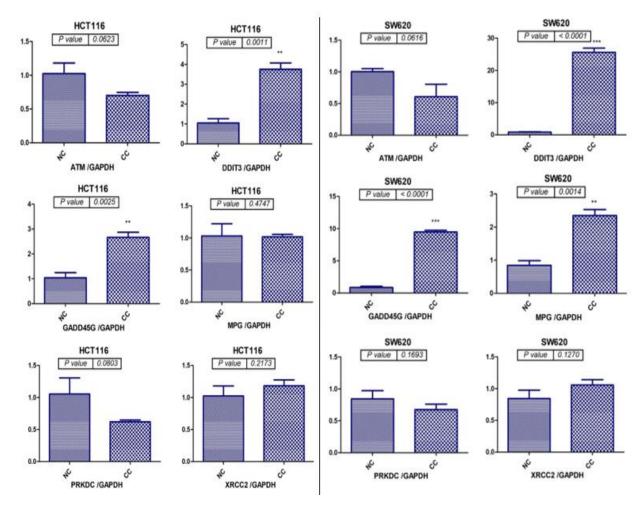



Figure-5. The mean fold change differences between the selected genes and GAPDH.

After normalization, significant differences in gene expression compared to GAPDH were observed in the HCT-116 cell line for DDIT3 and GADD45G. In the SW620 cell line, significant differences were noted in DDIT3, GADD45G, and MPG expression between treated and untreated cells.

# Gas Chromatography Mass Spectrometry analysis

The GC-MS analysis of L. sativum identified nine distinct chemical constituents, as illustrated in Figure 6. The retention times provided insight into the structural and chemical nature of these compounds, which belonged to various chemical categories, detailed in Table 3.

**Table-3.** GC–MS profiling of *Lepidium Sativum* Extract.

| Name                                   | R. Time | Area    | Peak Width | Quality | Mol Weight |
|----------------------------------------|---------|---------|------------|---------|------------|
|                                        |         |         | 50% (min)  |         | (amu)      |
| Benzyl nitrile                         | 9.829   | 93556   | 0.306      | 35      | 117.058    |
| Benzene, (isothiocyanatomethyl)-       | 12.888  | 2184838 | 0.838      | 83      | 149.03     |
| Hexadecanoic acid, methyl ester        | 19.056  | 84005   | 0.288      | 93      | 270.256    |
| Octadecanoic acid                      | 19.538  | 295159  | 0.844      | 64      | 284.272    |
| 9-Octadecenoic acid (Z)-, methyl ester | 20.739  | 322772  | 0.288      | 94      | 296.272    |
| Oleic Acid                             | 21.201  | 889643  | 0.488      | 62      | 282.256    |
| cis-9-Hexadecenoic acid                | 23.091  | 100418  | 0.438      | 64      | 254.225    |
| 8-Hexadecenal, 14-methyl-, (Z)-        | 24.498  | 67560   | 0.319      | 74      | 252.245    |
| cis-13-Octadecenoic acid, methyl ester | 28.114  | 126765  | 0.188      | 58      | 296.272    |

#### Abundance

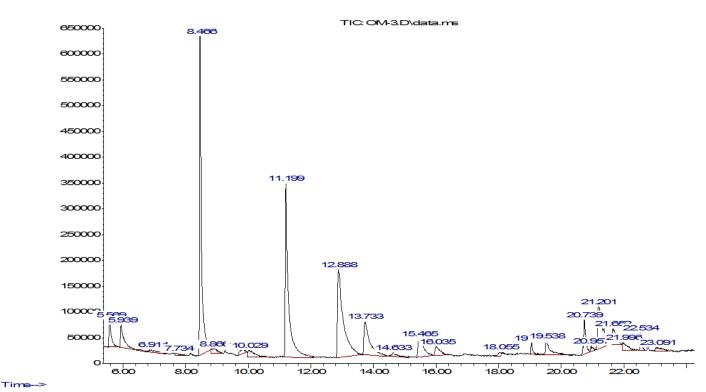



Figure-6. The GC-MS profile of Lepidium Sativum Extract.

# In silico evaluation of pharmacokinetics and toxicity for compounds in *Lepidium sativum* extract

The pharmacokinetic properties of selected compounds from *Lepidium sativum* extract were analyzed using Lipinski's Rule of Five, with data

retrieved via the SwissADME online platform. The results, summarized in Table 4, showed that none of the compounds breached more than one of the established criteria, indicating promising drug-like characteristics and good oral bioavailability. Furthermore, toxicological assessments as shown Table 5.

**Table-4.** Physicochemical properties of the identified compounds from *Lepidium Sativum* for good oral bioavailability.

| Compound                               |         | Lipinski's |     |       |        |            |
|----------------------------------------|---------|------------|-----|-------|--------|------------|
|                                        | MWg/mol | HBA        | HBD | Log P | MR     | Violations |
|                                        | ≤500    | ≤10        | ≤5  | ≤5    | 40–130 |            |
| Benzyl nitrile                         | 117.15  | 1          | 0   | 1.75  | 35.96  | 0          |
| Benzene, (isothiocyanatomethyl)-       | 149.21  | 1          | 0   | 2.91  | 45.38  | 0          |
| Hexadecanoic acid, methyl ester        | 270.45  | 2          | 0   | 5.54  | 85.12  | 1          |
| Octadecanoic acid                      | 284.48  | 2          | 1   | 5.93  | 90.41  | 1          |
| 9-Octadecenoic acid (Z)-, methyl ester | 296.49  | 2          | 0   | 5.92  | 94.26  | 1          |
| Oleic Acid                             | 282.46  | 2          | 1   | 5.65  | 89.94  | 1          |
| cis-9-Hexadecenoic acid                | 254.41  | 2          | 1   | 4.94  | 80.32  | 0          |
| 8-Hexadecenal, 14-methyl-, (Z)-        | 252.44  | 1          | 0   | 5.33  | 83.56  | 1          |
| cis-13-Octadecenoic acid, methyl ester | 296.49  | 2          | 0   | 5.9   | 94.26  | 1          |

MW= molecular weight; HBA= hydrogen bond acceptor; HBD= hydrogen bond donor; Log P= lipophilicity; MR= molar refractivity.

**Table-5.** Toxicological of Compounds Identified in *Lepidium sativum*.

| Variable                           | Compound Formula |        |          |          |          |              |              |             |  |  |
|------------------------------------|------------------|--------|----------|----------|----------|--------------|--------------|-------------|--|--|
|                                    | C8H7N            | C8H7NS | С17Н34О2 | С18Н36О2 | С19Н36О2 | C18H34O<br>2 | C16H30O<br>2 | C17H32<br>O |  |  |
|                                    | Absorption       |        |          |          |          |              |              |             |  |  |
| Blood-Brain Barrier                | Yes              | Yes    | Yes      | Yes      | Yes      | Yes          | Yes          | Yes         |  |  |
| <b>Human Intestinal Absorption</b> | Yes              | Yes    | Yes      | Yes      | Yes      | Yes          | Yes          | Yes         |  |  |
| Caco-2 Permeability                | Yes              | Yes    | Yes      | Yes      | Yes      | Yes          | Yes          | Yes         |  |  |
| P-glycoprotein Substrate           | NS               | NS     | NS       | NS       | NS       | NS           | NS           | NS          |  |  |
| P-glycoprotein Inhibitor           | NI               | NI     | NI       | NI       | NI       | NI           | NI           | NI          |  |  |
|                                    | Distribution     |        |          |          |          |              |              |             |  |  |
| Subcellular localization           | ly               | ly     | mt       | mt       | pm       | pm           | pm           | pm          |  |  |
|                                    | Metabolism       |        |          |          |          |              |              |             |  |  |
| CYP450 2C9 Substrate               | NS               | NS     | NS       | NS       | NS       | NS           | NS           | NS          |  |  |
| CYP450 2D6 Substrate               | NS               | NS     | NS       | NS       | NS       | NS           | NS           | NS          |  |  |
| CYP450 3A4 Substrate               | NS               | NS     | NS       | NS       | NS       | NS           | NS           | NS          |  |  |
| CYP450 1A2 Inhibitor               | I                | I      | NI       | I        | I        | I            | I            | I           |  |  |
| CYP450 2C9 Inhibitor               | NI               | NI     | NI       | NI       | NI       | NI           | NI           | NI          |  |  |
| CYP450 2D6 Inhibitor               | NI               | NI     | NI       | NI       | NI       | NI           | NI           | NI          |  |  |
| CYP450 2C19 Inhibitor              | NI               | NI     | NI       | NI       | NI       | NI           | NI           | NI          |  |  |
| CYP450 3A4 Inhibitor               | NI               | NI     | NI       | NI       | NI       | NI           | NI           | NI          |  |  |
|                                    | Toxicity         |        |          |          |          |              |              |             |  |  |
| AMES Toxicity                      | NAT              | NAT    | NAT      | NAT      | NAT      | NAT          | NAT          | NAT         |  |  |
| Carcinogens                        | NC               | NC     | С        | NC       | С        | NC           | NC           | С           |  |  |
| Acute Oral                         | II               | II     | III      | IV       | III      | IV           | IV           | III         |  |  |
| Rat Acute                          | 2.6059           | 2.6127 | 1.4915   | 1.3275   | 1.7357   | 1.3991       | 1.3991       | 1.7295      |  |  |

mt= Mitochondria; ly= Lysosome; pm=plasma membrane; NS= Non-substrate; S=Substrate; I=Inhibitor; NS=Non-inhibitor; NAT= Non AMES toxic; C= Carcinogens; Noncarcinogenic=NC I =LD50  $\leq$  50 mg/kg; II =50 mg/kg < LD50 < 500 mg/kg; III =500 mg/kg < LD50 < 5000 mg/kg; IV=5000 mg/kg < LD50.

#### **Discussion**

Recent studies have confirmed the significant impact of natural products derived from medicinal plants, fungi, and dietary sources in the treatment of cancers (Ali Abdalla et al., 2022; Talib et al., 2020). Over the past few decades, there have been notable advancements in the synthesis and application of chemotherapeutic drugs. However, despite their efficacy, the use of these drugs is hindered by toxicities and the development of drug resistance (Wang et al., 2019; Zhong et al., 2021). There is an urgency in finding treatments with reduced side effects compared to conventional therapies.

In the present study, two colorectal cancer cell lines with varying genetic backgrounds regarding the p53 state were chosen to serve as in vitro models of colorectal cancer. Initially, cells were tested for cellular viability against L. sativum extract, which exhibits dose-dependent cytotoxic effects in both cell lines (Figures 1&2). L. sativum is rich in polyphenols, flavonoids, and imidazole alkaloids, which are known to induce apoptosis (Doke and Manisha, 2014; Wadhwa et al., 2012; Behrouzian et al., 2014). The anticancer activity of L. sativum on human tongue squamous carcinoma (CAL-27) was reported by AlObaidi (2014) in a dose-dependent manner, with doses of 70, 100, and 150 µg/ml, which is in agreement with our results on colorectal cell suggesting same trend of anticancer effects of L. sativum on other types of cancer cells. Mahassni and Al-Reemi (2013) reported necrosis and apoptosis verified through morphological changes induced by L. sativum extract in the human breast cancer cell line MCF-7, highlighting the anticancer activity of L. sativum in the present study through increased apoptosis rates as observed by screening 84 DNA repair genes using PCR array analysis.

DNA repair was observed through elevated DDIT3 and GADD45G levels post treatment in both cells. DDIT3 and GADD45G are linked with endoplasmic reticulum stress and promote apoptosis and GADD45G alone is a negative regulator of cell growth at DNA damage checkpoints (Siwecka et al., 2019). The increased expression suggested a beneficial effect of *L. sativum* extract on cell viability and proliferation, through DNA-damaging agents. Downregulation of MPG was observed in SW620 cells on *L. sativum* treatment, indicating apoptosis rather than facilitating DNA repair in cancer cells. The MPG gene is expressed in the endoplasmic reticulum and

mitochondria and initiates short and long patch base excision repair (BER) for deamination and alkylation in DNA (Wallace et al., 2012).

Upregulation of GADD45G leads to apoptosis and growth arrest in Acute Myeloid Leukemia cells following chemotherapeutic treatment by impairing homologous recombination DNA repair, increasing DNA damage, and inducing apoptosis in cancer cells while leaving normal cells unaffected (Guo et al., 2021). Additionally, another study by Liebermann and Hoffman (2008) validated the involvement of GADD45 proteins, including GADD45A, GADD45B, and GADD45G, in stress signaling responses to various physiological and environmental stressors. including oncogenic stress (Liebermann and Hoffman. 2008). These proteins can induce cell cycle arrest and promote survival, senescence, DNA repair, and apoptosis. Furthermore, Lin et al. (2020) demonstrated that both DDIT3 and GADD45G were significantly increased in cancer cell lines and gastric cancer tissues compared to normal cell lines and healthy tissues. The overexpression of DDIT3 was found to enhance colony-forming ability, gastric cancer proliferation, sphere formation, and cancer stem cell stemness. The increased expression of DDIT3 and GADD45G, which are involved in the apoptosis process, was observed while the expression of MPG, responsible for repair mechanisms, decreased significantly, confirming that L. sativum extract induces apoptosis in cancer cells.

GC-MS analysis revealed the presence of compounds for noteworthy anticancer activities. known Isothiocyanatomethyl-Benzene is reported to inhibit cancer cell growth and stop carcinogenesis in HeLa, MCF-7, and MDA-MB-231 cell lines through caspase-3 apoptotic activation. On the other hand, isothiocyanatomethyl-Benzene shows low cytotoxicity against peripheral blood mononuclear cells, emphasizing its use as a selective anticancer agent (Paul et al., 2019). Hexadecanoic acid is known for colon cancer suppression; it can activate caspase 3 to induce pro-apoptotic effects in human oral squamous cell carcinoma (hOSCC) models and inhibit cancer cell proliferation (Budi et al., 2022). Octadecanoic acid is cytotoxic against MOLT-4 leukemia cells and can interact with DNA topoisomerase I to induce apoptosis in murine models (Reza et al., 2021). Moreover, oleic acid (methyl oleate) is reported to suppress expression levels of HER2 (erbB-2), a key oncogene involved in tumorigenesis and metastasis, inhibiting cell

proliferation in cancer cells. It can also affect intracellular calcium signaling related to cell proliferation and increase intracellular reactive oxygen species (ROS) levels and caspase-3 activity to induce pro-apoptotic effects in cancer cells (Jiang et al., 2017).

These compounds were further analyzed for ADME properties, detailing their safety profiles. According to Lipinski's Rule of Five, which is commonly used to assess the drug-likeness of orally administered compounds, the ideal criteria include: (i) a molecular weight of 500 Da or less; (ii) no more than 5 hydrogen bond donors; (iii) no more than 10 hydrogen bond acceptors; (iv) a logP value of 5 or below; and (v) a molar refractivity within the range of 40 to 130. Compounds meeting these benchmarks are typically considered to have favorable oral bioavailability (Bhat and Chatterjee, 2021). In this study, all tested compounds satisfied Lipinski's guidelines.

For toxicity assessment, the Ames test predictions indicated that the compounds were non-mutagenic and displayed low acute toxicity levels. Nonetheless, toxicological screening revealed that a few compounds may possess mild carcinogenic potential. Using the AdmetSAR tool, predicted carcinogenicity scores were found to be relatively low, with values such as 0.5347 for hexadecanoic acid methyl ester, 0.5217 for 9-octadecenoic acid (Z)-, methyl ester, and 0.6164 for 8-hexadecenal, 14-methyl-, (Z), indicating a low risk of carcinogenic effects (Asano et al., 2023; Ibrahim et al., 2021; Bhat and Chatterjee, 2021).

### **Conclusions**

The anticancer potential of *L. sativum* extract in colorectal cancer cell lines showed dose-dependent cytotoxicity, induced apoptosis, and altered key gene expressions linked to DNA damage and repair. Bioactive compounds identified via GC-MS exhibited favorable drug-like properties and low toxicity supporting their therapeutic relevance.

## **Acknowledgments**

The authors extend their appreciations to the Ongoing Research Funding program - Research Chairs (ORF-RC-2025-2300), King Saud University, Riyadh, Saudi Arabia.

**Disclaimer:** The views expressed in this article are those of the author(s) and do not necessarily reflect

those of SFDA or its stakeholders. Guaranteeing the accuracy and validity of the data is the sole responsibility of the research team.

Conflicts of Interest: None.

**Source of Funding:** This research was funded by the Ongoing Research Funding program - Research Chairs (ORF-RC-2025-2300), King Saud University, Riyadh, Saudi Arabia.

#### **Contribution of Authors**

AlDaihan S & Alanazi M: Contributed to conceptualization, resources, visualization, supervision and project administration.

Bin Watyan MA, AlAmri A, Alghamedi SO & Shaik J: Contributed to research methodology.

Shaik J, Bhat RS, AlZahrani M: Contributed to software analysis.

Bin Watyan MA, AlAmri A & Alghamedi SO: Contributed in method validation.

Bin Watyan MA, AlAmri A, Alghamedi SO & Khayyat AI: Contributed to formal analysis.

Bhat RS, AlZahrani M & Shaik J: Helped in investigation.

Bin Watyan MA, AlAmri A, Alghamedi SO, Shaik J & Bhat RS: Helped in data curation.

Bhat RS: Contributed in writing—original draft preparation.

Bin Watyan MA, AlDaihan S & Bhat RS: Helped in writing—review and editing.

Alanazi M: Funding acquisition and data interpretation.

All authors have read and approved the final draft of the manuscript.

### References

Aqafarini A, Lotfi M, Norouzi M and Karimzadeh G, 2019. Induction of tetraploidy in garden cress: morphological and cytological changes. Plant Cell, Tissue Organ Cult. 37(3): 627–635. doi: 10.1007/s11240-019-01596-5

Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J and Pérez de la Lastra JM, 2022. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted

- therapeutics. Genes Dis. 10(4): 1367-1401. doi: 10.1016/j.gendis.2022.02.007.
- AlObaidi LAH, 2014. Study the anticancer effect of Lepidium sativum leaves extract on squamous cell carcinoma (CAL-27) cell lines. Int. Res. J. Nat. Sci. 4: 48–52.
- Ali Abdalla YO, Subramaniam B, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K and Nagoor NH, 2022. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J. Trop. Med. 11: 5794350. doi: 10.1155/2022/5794350
- Aslani E, Naghsh N and Ranjbar M, 2014. Cytotoxic effects of hydro-alcoholic extracts of cress (Lepidium sativum)-made from different stages of the plant-on k562 Leukemia cell line. HMJ. 18: 364.
- Asano D, Takakusa H and Nakai D, 2023. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics. 16(1): 47. doi: 10.3390/pharmaceutics16010047.
- Behrouzian F, Razavi SMA and Phillips GO, 2014. Cress seed (Lepidium sativum) mucilage, an overview. Bioac. Carbohydr. Diet Fibre. 3(1): 17. DOI:10.1016/j.bcdf.2014.01.001
- Bhat V and Chatterjee J, 2021. The Use of in Silico Tools for the Toxicity Prediction of Potential Inhibitors of SARS-CoV-2, ATLA Alternatives to Laboratory Animals. 49, https://doi.org/10.1177/02611929211008196.
- Budi HS, Anitasari S, Ulfa NM, Setiabudi MA, Ramasamy R, Wu CZ and Shen YK, 2022. Palmitic acid of Musa Paradisiaca induces apoptosis through caspase-3 in human oral squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 26(19): 7099-7114. doi: 10.26355/eurrev\_202210\_29895.
- Doke S and Manisha G, 2014. Garden cress (Lepidium sativum L.) seed-an important medicinal source: a review. J. Nat. Prod. Plant Resour. 4: 69–80.
- El Sayed RA, Hanafy ZEM and Abd El Fattah HF, 2020. Possible antioxidant and anticancer effects of plant extracts from Anastatica hierochuntica, Lepidium sativum and Carica papaya against Ehrlich ascites carcinoma cells. Cancer Biol. 10: 1–6.
- Guo D, Zhao Y, Wang N, You N, Zhu W, Zhang P, Ren Q, Yin J, Cheng T and Ma X, 2021.

- GADD45g acts as a novel tumor suppressor, and its activation suggests new combination regimens for the treatment of AML. Blood. 138(6): 464-479. doi:10.1182/blood.2020008229
- Gupta S and Gupta R, 2023. Research Update on the Therapeutic Potential of Garden Cress (Lepidium sativum Linn.) with Threatened Status. Curr. Drug Res. Rev. doi:10.2174/01258997752738772310231020
- Hekmatshoar Y, Özkan T and Rahbar Saadat Y, 2022.

  Evidence for Health-Promoting Properties of
  Lepidium sativum L.: An Updated
  Comprehensive Review. Turk. J. Pharm. Sci.
  19(6): 714-723. doi:
  10.4274/tjps.galenos.2021.07504.
- Huang X, Arjsri P, Srisawad K and Yodkeeree S, 2024. Dejkriengkraikul, P. Exploring the Anticancer Potential of Traditional Thai Medicinal Plants: A Focus on Dracaena loureiri and Its Effects on Non-Small-Cell Lung Cancer. Plants 13: 290. https://doi.org/10.3390/plants13020290
- Ibrahim Z, Uzairu A, Shallangwa GA and Abechi SE, 2021. Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). Future J. Pharm. Sci. 7: 133. https://doi.org/10.1186/s43094-021-00288-2
- Jahani S, Heidari Z, Azami M and Moudi B, 2020. Comparison of anticancer effects of hydroalcoholic extracts of Camellia sinensis and Lepidium sativum L on HeLa cell line. Int. J. Cancer Manag. 13: e98913.
- Jia L, Wei Z, Luoqian J, Wang X and Huang C, 2025. Mitochondrial Dysfunction in Aging: Future Therapies and Precision Medicine Approaches. MedComm Future Med. 10.1002/mef2.70026,4,3.
- Jiang L, Wang W and He Q, 2017. Oleic acid induces apoptosis and autophagy in the treatment of Tongue Squamous cell carcinomas. Sci. Rep. 7: 11277. https://doi.org/10.1038/s41598-017-11842-5
- Liebermann DA and Hoffman B, 2008. Gadd45 in stress signaling. J Mol Signal. 3: 15. doi: 10.1186/1750-2187-3-15.

- Lin H, Liu S, Gao W and Liu H, 2020. DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ. J. Pharm. Pharmacol. 72(6): 807-815. doi:10.1111/jphp.1324.
- Mahassni SH and Al-Reemi RM, 2013. Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (Lepidium sativum) seeds. Saudi J. Biol. Sci. 2: 131-139. doi: 10.1016/j.sjbs.2012.12.002.
- Manohar D, Viswanatha GL, Nagesh S and Jain V, 2012. Shivaprasad HN. Ethnopharmacology of lepidium sativum linn (Brassicaceae): A review. Int. J. Phytother. Res. 2: 1.
- Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C and Świergiel AH, 2020. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules. 25(17): 3804. doi: 10.3390/molecules25173804
- Nurgali K, Jagoe RT and Abalo R, 2018. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 9: 245. doi: 10.3389/fphar.2018.00245.
- Painuli S, Quispe C, Herrera-Bravo J, Semwal P, Martorell M, Almarhoon ZM, Seilkhan A, Ydyrys A, Rad JS, Alshehri MM, Daştan SD, Taheri Y, Calina D and Cho WC, 2022.

  Nutraceutical Profiling, Bioactive Composition, and Biological Applications of Lepidium sativum L. Oxid. Med. Cell Longev. 2022: 2910411.

  doi:10.1155/2022/2910411
- Paul S, Basak P, Maity N, Guha C and Jana NK, 2019. Bis (Isothiocyanatomethyl) Benzene, A Plant Derived Anti-Neoplastic Compound: Purified from Moringa Oleifera Leaf Extract. Anticancer Agents Med. Chem. 19(5): 677-686. doi: 10.2174/1871520619666190206164137
- Reza ASMA, Haque MA and Sarker J, 2021.

  Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. in cancer cell line. Food Sci. Nutr. 9: 3777–3805. https://doi.org/10.1002/fsn3.2343
- Satiamurthy R, Mohamed Shah N, Ab Muin NF, Azmi N, Ismail CAN and Yaakob NS, 2025. Exploring Cancer Patients' Perspectives on Chemotherapy-Induced Peripheral

- Neuropathy Experiences and Its Management: A Qualitative Study. J. Cancer Educ. doi: 10.1007/s13187-025-02624-z
- Samuel SM, Kubatka P and Büsselberg D, 2021. Treating Cancers Using Nature's Medicine: Significance and Challenges. Biomolecules. 11(11): 1698. doi: 10.3390/biom11111698.
- Selek S, Koyuncu I, Caglar HG, Bektas I, Yilmaz MA, Gonel A and Akyuz E, 2018. The evaluation of antioxidant and anticancer effects of Lepidium sativum subsp.spinescens L. methanol extract on cancer cells. Cell Mol. Biol. 64: 72–80.
- Siwecka N, Rozpędek W, Pytel D, Wawrzynkiewicz A, Dziki A, Dziki Ł, Diehl JA and Majsterek I, 2019. Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int. J. Mol. Sci. 20(18): 4354. doi: 10.3390/ijms20184354.
- Talib WH, Alsalahat I, Daoud S, Abutayeh RF and Mahmod AI, 2020. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules. 25(22): 5319. doi: 10.3390/molecules25225319.
- Wadhwa S, Panwar MS, Agrawal A, Saini N and Patidar LN, 2012. A review on pharmacognostical study of Lepidium sativum. ARPB. 2: 316323.
- Wallace SS, Murphy DL and Sweasy JB, 2012. Base excision repair and cancer. Cancer Lett. 327(1-2): 73-89. doi: 10.1016/j.canlet.2011.12.038.
- Wang X, Zhang H and Chen X, 2019. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2(2): 141-160. doi: 10.20517/cdr.2019.10.
- Yang DL, Li Y, Ma SQ, Zhang YJ, Huang JH and He LJ, 2023. Compound 275# Induces Mitochondria-Mediated Apoptosis and Autophagy Initiation in Colorectal Cancer Cells through an Accumulation of Intracellular ROS. Molecules. 28(7): 3211. doi: 10.3390/molecules28073211
- Zhong L, Li Y and Xiong L, 2021. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Sig. Transduc. Target Ther. 6: 201. https://doi.org/10.1038/s41392-021-00572-w