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Abstract

Ameliorants improve soil's physical, chemical, and biological properties, boosting fertility and productivity. While
many studies focus on their chemical effects, few have explored their impact on soil microbial changes. This study
investigated changes in soil nutrients and bacterial communities in Red Yellow Podzolic soil amended with black
soldier fly (BSF) frass, using metagenomic analysis. The soil, treated with BSF frass, lime, and arbuscular
mycorrhizal fungi (AMF), was incubated for a period of three months. Samples included untreated soil (S), BSF
frass (BF), and treated soil (TS). Nutrients were analysed using AAS and spectrophotometry, while bacterial
communities were assessed via [llumina NGS. The nutrient profile of BSF frass (BF) differed significantly from
that of the soil. Ameliorant application increased exchangeable K*, Mg?', and Base Saturation. Metagenomic
analysis revealed distinct bacterial compositions, with 753 ASVs in soil (S), 408 in BF, and 613 in treated soil
(TS). The dominant genera in the soil included JG30-KF-AS9 (26%), Acidothermus (15%), and
Xanthobacteraceae (5%). In treated soil (TS), the predominant genera were similar but differed in relative
abundance, comprising JG30-KF-AS9 (29%), Alicyclobacillus (14%), Acidothermus (11%), and 1921-2 (6%).
The abundance of Alicyclobacillus increased significantly, from 1% in the soil (S) to 14% in the treated soil (TS).
The bacteriome community in BF was markedly differed, with predominant genera including Galbibacter (13%),
Brevibacterium (8%), Celvibrioraceae (6%), and Moheibacter (5%). These bacteria are capable of decomposing
organic matter; therefore, the use of BSF frass on acidic soil is expected to enhance soil fertility and health.
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Introduction

Ameliorants are substances applied for increasing soil
fertility along with productivity, therefore improving
its physical, chemical, and biological properties.
Diverse soil complications like acidity, salinity,
nutrient deficits, and insufficient soil architecture are
frequently remedied via their efforts. A wide-ranging
assortment of amendments exists which includes
dolomite, gypsum, organic materials, biochar, zeolite,
silica, mycorrhizae, and biostimulants. Biochar, as an
example, improves cation exchange capacity (CEC)
thereby enhances water and nutrient retention.
Gypsum curtails salinity while fortifying the
constitution of clay soils (Zhang, et al., 2023; Dariah
et al., 2021; Mulatu and Bayata, 2024). Many
investigations show that people employing enhancers
refine edaphic states since those augment its concrete,
synthetic, and organic attributes, hence easing prime
flora development (Dariah et al., 2021; Mon et al.,
2024; Herawati et al., 2021; Maswar et al., 2021).
Black Soldier Fly (BSF) frass is produced through the
decomposition of organic matter by BSF larvae. It
shows substantial potential as a bioameliorant—an
amendment designed to improve the physical,
chemical, and biological properties of soils, including
fostering nitrogen-fixing and phosphate-solubilizing
bacteria (Murtiningsih et al., 2023). BSF frass contains
a diverse array of beneficial microorganisms that are
essential for soil fertility, as these microbes help
enhance nutrient use efficiency, bolster resistance to
abiotic stresses, and support healthy plant growth
(Poveda et al., 2019). The rich content of
macronutrients (N, P, K, Ca, Mg) and micronutrients
(Zn, Fe), along with the presence of these beneficial
bacteria that decompose organic matter, makes BSF
frass an excellent bioameliorant. According to Mulatu
and Bayata (2024), bioameliorants can directly
increase the soil’s productivity by improving nutrient
availability, and indirectly by enhancing its physical
properties. Additionally, the relatively neutral pH of
BSF frass can help mitigate soil acidity, making it an
effective agent for improving soil health and fertility.
It is also important to note that the composition of BSF
frass varies depending on the type of feed it’s derived
from, particularly regarding phosphorus, potassium,
and micronutrients (Lopes et al., 2022).

Many studies have researched the impacts of
ameliorants on soil chemical properties and fertility
(Ismail et al., 2025; Matfu’ah et al., 2023). However,
very few studies have adequately studied the impacts
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of ameliorant application on the alteration of microbes
within the soils themselves. This study investigated
the impact of amelioration on microbiological
properties of soils through NGS-based metagenomics.
NGS-based metagenomics has been wused to
investigate nucleic acids in a variety of biological
samples (Oulas et al., 2015; Tay et al., 2024). NGS
sequencing allows the combined assessment of
microbial communities, including bacteria, viruses,
fungi, and other microorganisms.

In this study, the effect of BSF frass application on
changes in soil nutrients and bacterial community
dynamics was evaluated using a metagenomic
approach. Study results were expected to provide
additional evidence for the possibilities of BSF Frass
as a sustainable soil amendment, and how it could
contribute to the management of a soil microbiome
that supports eco-friendly agriculture.

Material and Methods

This study utilised the Red Yellow Podzolic, an acid
soil type native to Leuwiliang, Bogor, West Java.
Physical and chemical analysis of the soil used in the
study is presented in Table 1. The study incorporated
three treatments: Black Soldier Fly frass (BF), Soil
(S), and Treated Soil (TS). The Treated Soil had three
different kinds of ameliorants added to them
including, BSF frass, lime, and arbuscular mycorrhizal
fungi (AMF). BSF frass was sourced from BSF farms
located in Depok, West Java, Indonesia. The chemical
characterisation of BSF frass was as follows: pH: 8.80;
C-organic: 40.34%; total N: 2.10%; P»Os: 2.94%; and
exchangeable K?*: 105.99 cmol/kg. The lime used was
commercial dolomitic lime with approximately CaO
(29-32%) and MgO (18-22%). In this study the AMF
consortium of Glomus sp., Acaulospora sp., and
Gigaspora sp. was used.

Preparation of arbuscular mycorrhizal fungi

The formulation of arbuscular mycorrhizal fungi
(AMF) consortium used in the current study was
created by researchers from the National Research and
Innovation Agency and included mixed propagules of
Glomus sp., Acaulospora sp., and Gigaspora sp., at an
application rate of 2.5 tonnes per hectare. AMF
multiplication occurred over three months using corn
as the host plant and zeolite as the growth medium.
Germinated corn seeds were sown in pots measuring
15 cm x 30 cm, filled with zeolite, and mycorrhizal
inoculum was introduced in a 5 cm layer within the



planting cavity. A low-phosphorus fertilizer was
supplied in conjunction with routine irrigation. AMF
harvesting was conducted at the peak of vegetative
growth and during the early generative phase. The
upper part of the plants was pruned, and the material
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was desiccated for approximately two weeks. After
desiccation, the roots were separated from the stem
base, sectioned into small pieces, and combined with
the planting medium to generate AMF propagules.

Table-1. Physical and chemical analysis of the soil used in the study.

Characteristics Value

Texture (%)

- Sand 9

- Silt 37

- Clay 54
pH 4.6
C-org (%) 1.58
N Total (%) 0.14
C/N 11
P,Os Bray1 (mg/kg) 7.7
P,0Os (mg/kg) 730
K>O (mg/kg) 110
Exc. K" (cmol/kg) 11.43
Exc. Na* (cmol/kg) 2.87
Exc. Ca?* (cmol/kg) 0.19
Exc. Mg?* (cmol/kg) 0.18
Base Saturation (cmol/kg) 44
CEC (cmol/kg) 33.7
AP (cmol/kg) 17.69
H' (cmol/kg) 3.59

Soil incubation

The incubation study was conducted in Bogor, West
Java, using three treatment types: soil (S), BSF frass
(BF), and treated soil (TS). For each treatment, 1,000
g of material were placed in plastic containers. The TS
treatment consisted of a mixture of 987.5 g of soil, 5 g
of BSF frass, 5 g of lime, and 2.5 g of arbuscular
mycorrhizal fungi (AMF). All components were
thoroughly homogenized and incubated at ambient
room temperature for three months. After the
incubation period, the samples were analysed for soil
nutrient content and metagenomic profiles.

Soil analysis

The soil pH was measured using a glass electrode in a
1:5 soil-to-water solution ratio. Organic carbon
content was determined using the Walkley and Black
wet combustion method (Walkley and Black, 1934),
while total nitrogen (N) was analyzed using the
Kjeldahl method (Bremner and Mulvaney, 1982).
Available phosphorus (P,Os) was extracted and
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quantified via the Bray 1 method (Bray and Kurtz,
1945). Exchangeable bases (Ca, Mg, K, Na) were
extracted using 1 M ammonium acetate (NH4OAc) at
pH 7.0 and quantified using atomic absorption
spectrometry (AAS) (Thomas, 1982). The cation
exchange capacity (CEC) was assessed by saturating
the soil with 1 M NH4OAc at pH 7.0.

Metagenomic analysis

Metagenomic analysis was conducted to examine
three sample types: soil (S), BSF frass (BF), and soil
treated with BSF frass, lime, and arbuscular
mycorrhizal fungi (TS). Genomic DNA was extracted
using the Quick-DNA Magbead Plus Kit (Zymo
Research, D4082). The initial quantity and purity of
the extracted DNA were assessed using a Thermo
Scientific Nanodrop 2000 spectrophotometer. PCR
amplification was performed using the Phusion™ Plus
PCR Master Mix (F631L), and the PCR products were
visualized through agarose gel electrophoresis. The
Qubit dsDNA HS Assay Kit (Thermo Scientific) was
utilised for precise DNA quantification.



The DNA samples were sequenced employing the
Illumina HiSeq 2 x 250 bp paired-end reads platform
with 30k tags per sample. For bacterial species, the
V3-V4 region of the 16S rRNA gene was amplified
using the primers 341F (5'-
CCTAYGGGRBGCASCAG-3) and 806R (5'-
GGACTACNNGGGTATCTAAT-3'), generating a
470 bp amplicon.

Library Preparation and Sequencing of gDNA samples
were amplified with target-specific 16S V3-V4
primers. Library preparation was performed using the
final PCR products. The Illumina platform sequenced
the final library to generate paired-end raw reads.
PICRUSt2 was employed to predict the functional
potential of microbial communities by inferring the
presence of genes and enzymes. This prediction is
based on the assumption that the functional potential
of a microbial community can be inferred from its
taxonomic composition. Functional profiling was
further analysed through KEGG Orthology (KO)
pathways, and a secondary PLS-DA was performed to
evaluate the impact of treatments on microbial
metabolic functions. Key functional enzymes and
pathways were visualized using heatmap analysis
across different treatment groups.

Statistical analysis

The analysis of the relationship between soil nutrient
content data and the ten most abundant bacterial
genera was carried out using the Partial Least Squares
Discriminant Analysis (PLS-DA) method. The
analysis process was carried out using the latest
version of the MetaboAnalyst platform available
online at https://www.metaboanalyst.ca/. The input
data used had previously been normalized and log-
transformed according to the standard protocol
recommended by MetaboAnalyst to ensure the
stability and reliability of the multivariate discriminant
analysis results.
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Adapter and PCR primer sequences from the paired-
end reads were eliminated using Cutadapt (Bellemain
et al, 2010). DADA2 was employed to rectify
sequencing errors, eliminate low-quality sequences,
and address chimeric errors (Martin, 2011). The
resulting ASV data was used for taxonomic
classification, utilising the SILVA
(silva_nr99 v138.1) (16S) database. Downstream
analysis and visualisations were performed using
packages in  RStudio (R version 4.2.3)
(https://www.R-project.org/) and Krona Tools
(https://github.com/marbl/Krona).

Results

Soil nutrient changes

Partial Least Squares Discriminant Analysis (PLS-
DA) revealed that the soil (S) and treated soil (TS)
samples shared similar chemical properties, as
indicated by their close proximity in the PLS-DA
score plot (Figure 1). In contrast, the BSF frass (BF)
sample displayed markedly different chemical
characteristics. The combination of BF with lime and
arbuscular mycorrhizal fungi (AMF) had a higher
number of  exchangeable potassium  (K%),
exchangeable magnesium (Mg?"), and base saturation
(BS) than other samples (Table 2). Despite BF's
elevated pH, it was insufficient to raise the overall soil
pH. The high carbon-to-nitrogen (C/N) ratio in BF
likely contributed to a slow nutrient release, promoting
a prolonged fertilization effect. However, the three-
month incubation period was inadequate to enhance
immediate nutrient availability. This aligns with
findings by Pei et al. (2019), who reported that
nitrogen immobilization and release are positively
correlated with the C/N ratio.
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Table-2. Chemical components of BSF frass (BF), soil (S) and treated soil (TS) after 3-month incubation.

Characteristics BSF Frass (BF) Soil (S) Treated Soil (TS)
Water Content (%) 29.08 - -
pH 8.3 4.5 4.2
C-org (%) 40.34 1.58 1.53
N Total (%) 2.10 0.18 0.19
N-org (%) 1.02 - -
C/N 19 - -
P,0s Brayl (mg/kg) - 9.96 11.91
P»0s (mg/kg) 29.400 338 335
K>0 (mg/kg) 49.000 107.5 108
Exc. K" (cmol/kg) 195.99 0.43 3.32
Exc. Na" (cmol/kg) 116.60 0.18 0.26
Exc. Ca** (cmol/kg) 30.25 12.63 12.47
Exc. Mg?* (cmol/kg) 6.18 2.93 4.74
Base Saturation (cmol/kg) 311.96 47.50 59.88
CEC (cmol/kg) 83.03 34.04 34.72
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Figure-1. The PLS-DA score plot shows chemical component's and three dominant microbes distribution on BF,
S, and TS samples.
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Chemical and microbial key variables

Figure 2 presents the results of Partial Least Squares
Discriminant Analysis (PLS-DA), illustrating the
distinctions among the three groups (S, TS, and BF)
based on chemical and microbial parameters (Figure
2a). The analysis also highlights key variables,
represented by loading vectors, that contribute
significantly to this differentiation (Figure 2b). Soil
chemistry variables, exchangeable Na', P.Os, C-
Organic, N-Total, CEC, Base saturation trend to the
left, strongly associated with BF. Exchangeable K*
and K20 (%) trend to the top left, also associated with
BF, but slightly closer to the PC2 axis. This means that
BF has very high macro and organic nutrient content.
BF excrement is nutrient-dense, comprising N, P, K,
organic matter, and chitin derived from larval
moulting. Studies demonstrated that BF excrement
contains much higher levels of N and K than other
insects (Beesigamukama et al., 2022). Moreover,
applying liquid organic fertiliser made from BSF frass
increased exchangeable Na® significantly than the
control (Sopha et al., 2025).
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Figure 3b illustrates the Variable Importance in
Projection (VIP scores) derived from the PLS-DA
(Partial Least Squares Discriminant Analysis)
analysis. It is utilised to identify the variables that most
significantly differentiate the groups (in this case, BF,
S, and TS). A VIP score > 1 indicates a substantial
contribution to the separation of groups in the model.
The higher the value, the stronger the role of the
variable in influencing the separation between groups.
Soil chemical variables (Exc. Na*, P-Os, K20, Exc. K*,
C-Organic, etc.) are the main factors that distinguish
the BF group from S and TS. Microbial genera such as
Alicyclobacillus and Conexibacter are essential in
distinguishing TS from other groups. This PLS-DA
VIP plot provides complementary information that
strengthens the previous PLS-DA, biplot, and heatmap
results while confirming which variables are the most
determinant in the data structure. Soil chemical factors
dominate BF. Specific microbial communities
dominate TS. S is transitioning, with certain typical
microbes and low nutrient levels.

(b)
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01
Component1 (84.8%)

Figure-2. PLS-DA (Partial Least Squares Discriminant Analysis) of BF, S, and TS treatment: (a) differentiation
based on physicochemical and microbiological parameters. (b) key variables with loading vectors contribute to

the differentiation.
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Figure-3. (a) Heatmap with hierarchical clustering and (b) Variable Importance in Projection (VIP scores) from
the PLS-DA (Partial Least Squares Discriminant Analysis).

Bacterial diversity

Table 3 show the majority genera in each treatment.
The predominant bacterial genera identified in the soil
included JG30-KF-AS9 (26%), Acidothermus (15%),
1921-2 (5%), Xanthobacteraceae (5%), Conexibacter
(3%), HSB OF53-F07 (3%), and Ammoniphillus (2%).
In contrast, the ameliorant-treated soil exhibited
dominant bacterial genera including JG30-KF-AS9
(29%), Alicyclobacillus (14%), Acidothermus (11%),
1921-2 (6%), Xanthobacteraceae (5%), Conexibacter

(5%), HSB OF53-F07 (3%), and Acidibacter (2%). In
BSF frass, the most abundant genera included

Galbibacter (13%), Brevibacterium (8%),
Celvibrioraceae (6%), Moheibacter (5%), Ganicola
(3%), Salinicoccus (3%), Lentibacillus (3%),
Orrethobacterium  (3%),  Nocardiopsis  (2%),

Demecuina (2%), Pelagibacterium (2%), Paracoccus
(2%), Marinobacter (2%), Cyclobacteriaceae (2%),
and Membranicola (2%). This variation underscores
the impact of various treatments on microbial
community composition.

Table-3. Taxa genus taxonomic classification of bacteria found in soil (S), BSF Frass (BF) and ameliorant-treated

soil (TS).
No S TS BF
1 Acidothermus 0,430 Alicyclobacillus 0,304 Galbibacter 0,262
2 1921-2 0,152 Acidothermus 0,244 Brevibacterium 0,200
3 HSB OF53-F07 0,098 1921-2 0,127  Salinicoccus 0,105
4 Conexibacter 0,085 Conexibacter 0,113 Moheibacter 0,097
5 Ammoniphilus 0,059 HSB OF53-F07 0,058 Nocardiopsis 0,080
6 Bacillus 0,039 Acidibacter 0,051 Garicola 0,068
7 Candidatus Solibacter 0,036 FCPS473 0,030 Ornithobacterium 0,064
8 Bryobacter 0,035 1921-3 0,026 Lentibacillus 0,056
9 Candidatus Koribacter 0,033 Sinomonas 0,025 Corynebacterium 0,036
10 Alicyclobacillus 0,033  Occallatibacter 0,022  Pelagibacterium 0,033
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Top Functional Enzyme Contributions by Brevibacterium and Galbibacter
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Figure-4. (a) Predictive functional analysis using Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt2) and (b) Heatmap and stacked bar visualizations (X and Y') highlight functional

specialization between the two genera.

Figure 4a presents a Principal Component Analysis
(PCA) of KEGG Ortholog (KO) pathway profiles
from three sample types, illustrating distinct microbial
functional compositions among them. The application
of BSF frass alters the soil's microbial KO pathway
profile, indicating a shift in its functional potential,
while Figure 4b presents a heatmap illustrating the
contributions of the top functional enzymes by two
bacterial genera: Brevibacterium and Galbibacter.

Figure 4b highlights the major KEGG functions
contributed by Brevibacterium and Galbibacter.
Based on taxonomy mapping and PICRUSt2
functional  predictions, the bacterial genera
Brevibacterium and Galbibacter made significant
contributions to various metabolic pathways within
the soil microbial community. Galbibacter 1is
primarily predicted to contribute to the activities of

nucleotidyltransferase (EC:2.7.7.7), ATP-dependent
helicase  (EC:3.6.4.12), glycoside  hydrolase
(EC:3.2.1.51), and oxidoreductase (EC:1.9.3.1), while
Brevibacterium is predicted to play a more prominent
role in oxidoreductase activity (Ec:1.1.1.100).

Amplicon sequence variant

Amplicon metagenomic analysis of the three samples
is summarized in Table 4. The Shannon and Simpson
indices for the soil (S) and ameliorant-treated soil (TS)
samples were relatively similar, indicating comparable
microbial diversity. The higher Shannon index
observed in the S and TS samples suggests greater
microbial diversity than the BSF frass (BF) sample,
likely due to a larger number of species with more
even abundance distributions.

Table-4. Amplicon metagenomic analysis of in soil (S), BSF Frass (BF) and ameliorant treated soil (TS).

Samples  Observed Shannon Simpson InvSimpson
S 753 5.9443 0.9949 196.0080
BF 408 4.5958 0.9683 31.6416

TS 613 5.5556 0.9903 103.3334

Phylogenetic relationship

Figure 5 illustrates the phylogenetic relationships
among bacterial ASVs in the three tested samples. The
analysis reveals that the majority of ASVs from soil
and ameliorant-treated soil exhibit clustering,
indicating a close relationship. In contrast, ASVs
derived from BSF frass, such as ASVI1, ASV13,

https.//doi.org/10.35495/ajab.2025.093

ASV39, ASV40, and ASV4S8, constitute a distinct
group, suggesting a closer phylogenetic relationship
among them. This diagram highlights the bacterial
community present in BSF frass compared to
untreated and ameliorant-treated soil.
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Figure-5. Phylogenetic trees of bacteria in soil (S), BSF frass (BF), and ameliorant treated soil (TS).

Discussion

Figure 1 further illustrates that the BF sample had
distinct chemical characteristics compared to both S
and TS samples. While S and TS samples showed
minimal variation, particularly in exchangeable K",
Mg?*, and BS, the BF sample exhibited significantly
higher exchangeable sodium (Na*) levels—
approximately 110-120 cmol/kg—compared to near-
zero levels in the S and TS groups. Exchangeable Na*
emerged as a key variable distinguishing the BF
sample. Moreover, boxplot analyses reinforced the
multivariate findings, particularly highlighting the
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elevated phosphorus content in BF as a defining
characteristic.

K-O is one of the dominant parameters that is a sharp
differentiator between the BF treatment and the other
two treatments. The potassium content difference can
significantly influence microbial responses, especially
in sensitive samples or dependent on the availability
of macronutrients. In the PLS-DA loadings plot shown
in Figure 1, K-O is also one of the variables located far
from the canter, indicating that it has a significant
weight in forming the main components. This
indicates that K-O plays a strong role in defining the
structure of differences between treatment groups.

10



The BF sample shows very high exchangeable K*
levels, with values above 100 cmol/kg. S and TS are
much lower, where S is close to zero (seemingly very
small), and TS has a slightly higher value than S. BF
was chemically very different from S and TS
regarding available potassium. This finding reinforces
the understanding that BF is a group with a nutrient
advantage, which is likely to also impact the microbial
community structure. The addition of BSF to the soil
can increase K exchange so that it is beneficial for
plants, where K becomes available to plants and can
be easily exchanged with other ions in the soil cation
exchange complex. According to Ragel et al. (2019),
K plays an important role in regulating cell osmotic
pressure, which controls the opening and closing of
stomata. This mechanism affects the efficiency of
water use and photosynthesis, especially under water
stress conditions.

Conversely, the BF sample exhibited clear separation,
indicating divergent chemical characteristics. This
differentiation 1is ascribed to the distinctive
composition of BF, the residual by-product produced
after BSF larvae digest organic substances. BF is
nutrient-dense and comprises larval excreta,
undigested feed remnants, moulted exoskeletons, and
microbial biomass.  The soil utilised in this
investigation was a red-yellow podzolic variety,
distinguished by elevated levels of iron (Fe) and
aluminium (Al), low pH, little organic matter content,
and reduced cation exchange -capacity (CEC),
collectively resulting in its restricted potential to retain
and provide nutrients.

The results of this study display distinct differences in
the chemical characteristics of BSF frass and soil.
These differences are primarily due to their differing
origins: frass is derived from the decomposition of
organic waste (Siddiqui, et al., 2022), while soil is
formed through the weathering of minerals and
organic matter (Adhikari et al., 2024). The
composition and nutrient content also differ, with frass
being richer in nutrients and active organic matter
(Bohm et al.,, 2023). Additionally, the biological
processes involved are distinct—frass results from
larval activity (Siddiqui et al., 2022), whereas soil
forms through long-term natural decomposition
(Adhikari et al., 2024).

The results revealed that the application of BSF frass
during a 3-month incubation period did not
substantially alter soil chemical parameters. This is
likely due to the slow decomposition of the organic
matter in the frass. The low soil pH may have limited
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the effectiveness of the frass. The highly acidic soil,
combined with its high buffering capacity, likely
prevented any substantial pH change. Additionally,
the frass dosage may have been insufficient to
neutralize soil acidity, and microbial activity was
likely suppressed under these acidic conditions (Li et
al., 2023), resulting in suboptimal decomposition and
nutrient release.

Three  dominant  microbes,  Alicyclobacillus,
Conexibacter, and Acidothermus, are microbial
indicators significantly differentiating TS from BF and
S groups (Figure 1). Their presence is dominant in TS,
intermediate in S, and very low in BF. This pattern
supports the role of this genus as a determinant of
microbial community structure due to different
planting media treatments or soil conditions. It can be
used as a biological marker in interpreting
metagenomic or soil ecology results. Alicyclobacillus
is very prominent in the upper right and is closely
associated with the TS group, supporting the previous
boxplot results. Conexibacter is also skewed towards
TS, but more towards the centre may favour TS.
Acidothermus is closer to S, suggesting this genus may
be more prevalent in the S group than in TS and BF.
Figure 3a, a heatmap with hierarchical clustering,
showing the distribution pattern of variable values
(soil chemistry and microbial genera) across samples
from three treatment groups: BF (red), S (green), and
TS (blue). BF group shows intense red colour in
almost all chemical elements such as K:O,
exchangeable K, exchangeable Mg?*, C-Organic,
P.Os, and exchangeable Na®. This group has
consistently high nutrient content. In contrast, the
colour is blue for most microbial genera (especially
Alicyclobacillus, Conexibacter, etc.), indicating low
presence. TS group, red colour is seen in microbial
genera such as Alicyclobacillus, Conexibacter, HSB
OF53-F07, Acidothermus, etc. Nutrient values tend to
be low (blue colour). This indicates that the microbial
community in TS is very different, possibly due to soil
conditions that are not too rich in nutrients but support
specific microbes. In the S group, in terms of pattern,
nutrient values are low, like those of TS, but the
microbial composition is in the middle between BF
and TS. Some genera, such as Moheibacter or
Salinicoccus, tend to be higher in S.

The row (variable) dendrogram shows two main
clusters. The soil chemical variables tend to cluster
together (at the top), and the microbial variables
cluster alone at the bottom. This confirms that the
different treatments affect soil chemistry and change
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the microbial community's overall structure. The
column (sample) dendrogram groups samples by
treatment type, showing that each group's responses
are very consistent and significantly different between
groups. BF has a very high soil chemistry profile for
all elements, but with low or different microbial
diversity. TS shows a dominance of specific microbes
such as Alicyclobacillus and Conexibacter, but is low
in nutrients. S is in the middle, with moderate nutrient
levels and microbial composition, not extreme.

The predominant bacterial genera identified in the soil
(S) and ameliorant treated soil (TS) Acidothermus,
Conexibacter and Alicyclobacillus. Acidothermus has
been identified as the most abundant genus in both the
rhizosphere and endosphere compartments (Berrios et
al., 2023), and is closely associated with the
biosynthesis and accumulation of Dbioactive
compounds in certain plants (Li et al, 2023).
Acidothermus is generally classified as a thermophilic
and acidophilic bacterium (likes hot and acidic
environments) that can degrade cellulose (Wang et al.,
2020). The cellulose enzyme produced can decompose
plant biomass, so that it can increase soil nutrient
content and support plant growth (Lin et al., 2022).
These bacteria have the potential to be used in
biofertilizers or soil decomposers.

Conexibacter represents a key genus within the
bacterial network of primary forests (Pedrinho et al.,
2020). Conexibacter plays an important role in carbon
and nitrogen cycles, particularly in nitrification;
however, the abundance of Conexibacter is affected
by changes in ecosystem (Zhang et al., 2020). The
genus Alicyclobacillus includes thermo-acidophilic,
strictly aerobic, heterotrophic, endospore-forming
bacteria (Stackebrandt, 2014), which frequently
inhabit orchard soil and places with extreme acidity in
the fruit processing industry (Ciuffreda et al., 2015).
The ability to thrive in thermal and acidic
environments can be attributed to the combination of
fatty acids that exist on the cell membrane (Sarma et
al., 2023).

Despite the composition of bacteria in S and TS, the
bacteria present in BF plays an important role in
organic matter degradation. Galbibacter typically
exists in marine environments and is able to
decompose complex organic matter and therefore
contributes to nutrient cycling (Wei et al., 2023).
Brevibacterium occurs in a variety of environments,
including soil where it facilitates the decomposition of
organic matter. Some strains of Brevibacterium
produced antimicrobial components and can be
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considered for applications in bioremediation
(Kalsoom et al., 2020). Some species of Moheibacter
can be found in both soil and waterbodies where it
plays a role in organic matter turnover and nutrient
cycling (Liu et al., 2024; Zhao et al, 2024).
Salinicoccus is a genus capable to grow in very high
pH (Kiledal et al., 2021).

Figure 4b indicates that Galbibacter is mostly
predicted to contribute to the activity of enzymes
involved in the decomposition of organic matter, such
as glycoside hydrolases (EC:3.2.1.51), and
oxidoreductase (EC:1.9.3.1), while Brevibacterium is
predicted to have a greater involvement in
oxidoreductase activity (Ec:1.1.1.100). Jin et al.
(2020) reported that Brevibacterium produces
carbohydrate-active enzymes (CAZymes), a group of
enzymes involved in the breakdown of complex
carbohydrates (Cantarel et al., 2008).

Glycoside hydrolase is an enzyme that catalyses the
hydrolysis of glycosidic bonds between two sugar
units (carbohydrates) or between a sugar and a non-
carbohydrate compound (aglycone). It plays a crucial
role in the decomposition of organic matter,
particularly by  breaking down = complex
polysaccharides into simpler sugars (Davies and
Henrissat, 1995; Withers, 2001). Oxidoreductase
enzymes play a vital role in the decomposition of
organic matter, particularly by oxidizing complex and
recalcitrant compounds such as lignin (Kirk and
Farrell, 1987; Bugg et al., 2011). In the absence of
these enzymes, microbial decomposition would
proceed significantly more slowly and with reduced
efficiency

The microbial community was more diverse than the
original acid soil whilst still having some traits from
BSF frass. The acid tolerant microbes were
predominantly in the acid soil, while the BSF frass
samples showed a more equally distributed microbial
community with added microbes that break down all
of the organic matter rich in protein. The ameliorant
treated soil had a more complex microbial community,
having more plant beneficial microbes compared to
the acid soil. Acidified soil will increase the
abundance of bacteria that thrive in low pH (Shi et al.,
2021; Guan and Liu, 2020), while the high organic
matter in BSF frass will support the abundance of
organic matter decomposers (Raza et al., 2023; Xu et
al., 2024; Séneca et al., 2021).

The addition of ameliorants (BSF frass, lime, AMF)
changed the dominant bacterial genera in the soil. In
untreated soil, the dominant genera were JG30-KF-
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AS9 (26%), Acidothermus (15%), 1921-2 (5%),
Xanthobacteraceae (5%), Conexibacter (3%), HSB
OF53-F07 (3%) and Ammoniphilus (2%). After the
ameliorant was added, the dominant genera were
JG30-KF-AS9  (29%), Alicyclobacillus  (14%),
Acidothermus (11%), 1921-2 (6%),
Xanthobacteraceae (5%), Conexibacter (5%), HSB
OF53-F07 (3%), and Acidibacter (2%). The major
difference we noted was the greater dominance of the
genus Alicyclobacillus after the ameliorant treatment.
The genus Alicyclobacillus has the potential to survive
acidic conditions and high temperatures (Bevilacqua
et al., 2025; Tyfa et al., 2015).

A metagenomic analysis identified 753 unique
bacterial amplicon sequence variants (ASVs) in the
soil, 408 ASVs in BSF frass and 613 ASVs in
ameliorant-treated soil. Our analysis of bacterial
diversity and abundance indicated that soil and
ameliorant-treated soil had greater diversity and more
uniform distribution than BSF frass. Overall, the type
of conditions present in the growth environment play
a critical role in determining which types of bacteria
grow (Gonzalez and Aranda, 2023). The evidence
indicates; however, that untreated and ameliorant-
treated soil host more ASVs, and reflect a more
balanced microbial community. Conversely, when you
consider total ASVs, BSF frass had a lower Simpson
Index than soil or ameliorant-treated soil indicating a
limited number of ASVs dominated BSF frass as
associated with the conditions of the environment.
When it comes to soil, it supported a more diverse
microbial community that was more evenly distributed
than BSF frass.

Bacterial ASV quantity and diversity were greater in
soil (S) and ameliorant-treated soil (TS) than in BSF
frass (BF). Bacterial abundance in soil represented a
more uniform distribution whereas BSF frass
abundance was represented by few bacterial species
contributing to high abundance. These factors
impacted by the distinct ecological conditions of soil
and BSF frass such that soil represents a diverse
microbial habitat, bacterial diversity includes all
bacteria that play a possible role in nutrient cycling,
decomposition of organic matter, and plant health.
Bacterial diversity hinges on several factors such as
soil pH, moisture, temperature, and organic matter
content, but also interactions with higher life forms
including plants and other microorganisms (Zhou et
al., 2024; Zheng et al., 2019; Philippot et al., 2024).
BSF frass, as previously stated, is a product of the
ecosystem of decomposing organic material whereby
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a homogenous condition is created for specific
bacteria to proliferate. Roller and Schmidt (2015)
illustrated that when conditions were homogenous,
organisms recognized as rapidly growing organisms
were favourable.

Phylogenetic analysis identified BSF frass ASVs as a
separate cluster from those found in soil. The unique
environmental conditions created in BSF frass, which
are mainly organic matter remnants, support the
growth of organic matter degrading bacteria. When
applied as an ameliorant, only a small subset of
organic matter-degrading bacteria inhabit ameliorant-
treated soil; this suggests that the degradation of
organic matter by the soil bacteria faced challenges
surviving in acidic soils with low organic carbon
concentrations.

The Variable Importance in Projection (VIP) scores
from the PLS-DA, shown in Figure 3b, highlight
differences in the contribution of bacterial groups to
group separation. For instance, Alicyclobacillus had a
VIP score of 1.4, while Acidothermus scored 0.6.
Microbes or species with high VIP scores typically
play a key role in differentiating between groups and
can be located within the phylogenetic tree (Figure 5).
The BSF frass significantly altered the structure of the
soil microbial community and the nutrient profile, as
indicated by the treatment-specific clustering of
bacterial ASVs in phylogenetic analysis. When these
influential microbes cluster within a specific
taxonomic clade, the grouping in the tree may reflect
underlying biological trends—such as a particular
clade being more abundant in one condition.

This study demonstrated that the combination of BSF
frass (BF) with lime and AMF resulted in higher levels
of exchangeable potassium (K*), exchangeable
magnesium (Mg?*), and base saturation (BS), without
significantly affecting soil pH. The bacterial
community profile in the BSF frass differed markedly
from that in the soil, with BF containing ASVs such as
Galbibacter, Brevibacterium, members of
Celvibrioraceae, and Moheibacter—reflecting a
distinct microbial composition linked to the unique
chemical characteristics of the frass. The results were
obtained using BSF reared on restaurant waste. Frass
was applied at 5 g, together with 5 g of lime and 2.5 g
of AMF per 1,000 g of soil, and the mixture was
incubated for three months at room temperature
(30 °C) under field capacity moisture.
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Conclusions

The findings of this study suggest that BSF frass has
distinct  chemical properties and microbial
communities relative to untreated soils. The organic
matter content in BSF frass supports the growth of
many particular microbes involved in the
decomposition of organic material. Ameliorant
application to acidic soil significantly increased
exchangeable potassium (K*), magnesium (Mg?*) and
base saturation (relative to before treatment), as well
as altered the composition and abundance soil
microbial communities.

Metagenomic sequencing confirmed clear differences
in bacterial diversity and composition of bacterial
communities from each sample. A total of 753
amplicon sequence variants (ASVs) were identified in
soil (S), 408 in BSF frass (BF), and 613 in treated soil
(TS). Bacterial ASVs were dominated by JG30-KF-
AS9Y, Acidothermus and Xanthobacteraceae family in
the soil sample. These bacterial ASVs in the treated
soil were similar but differed in relative abundance
(JG30-KF-AS9, Alicyclobacillus, Acidothermus and
1921-2), where Alicyclobacillus had a significant
increase from 1% relative abundance to 14% relative
abundance from the untreated soil (S) to the treated
soil (TS).

Interestingly, the bacterial community profile that we
found in BSF frass was different from that found in the
soil samples. BF included ASVs of Galbibacter,
Brevibacterium, Celvibrioraceae and Moheibacter,
which was a distinct community profile representing a
different chemical composition of the frass.
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