The effects of *Cryptosporidium* infection on gut fungi and enzyme abundance in *Sus domesticus*

Wang Lei¹,³, Lu Sijia¹, Zou Wen¹, Sun Na², Muhammad Usman Saleem⁵, Mudassar Nazar⁶, Mohammad Farooque Hassan⁷, Farid Shokry Ataya⁸, Kong Qinghui⁹, Li Kun¹⁰

¹Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
²Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
³College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
⁴University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Pakistan
⁵Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, Sindh, Pakistan
⁶Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
⁷Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Received: July 23, 2023
Accepted: August 22, 2023
Published Online: September 9, 2023

Abstract

Pigs are known to be natural hosts of *Cryptosporidiosis*, which poses a serious threat to public health. According to the World Health Organization (WHO), *Cryptosporidiosis* is the major cause of severe diarrhea which causing death in infants. Many researchers suggest that gut fungi have an indispensable function in host metabolism and immunity. However, few studies have been performed to understand how *Cryptosporidium* infection induces alterations in the intestinal fungal communities of Tibetan pigs. Therefore, fecal samples from *Cryptosporidium* infected and Healthy Tibetan pigs were examined by internal transcribed spacing (ITS) gene amplification sequencing. Results showed that a total of 2 phyla, 5 classes, 9 orders, 10 family, 13 genera of fungi were detected from both the H (Healthy Tibetan pigs) and INF (*Cryptosporidium* infection pigs) groups. The results manifested that proportion and profile of the total fungal population obviously changed under the *Cryptosporidium* infection, marked by a reduction in the abundance of beneficial fungi, i.e., *Leotiomycetes* (p < 0.05), *Aspergillaceae* (p < 0.05), *Penicillium* (p < 0.05), *Xenoacremonium* (p < 0.05) and *Eurotiales* (p < 0.05) and an increase in the abundance of disease-causing fungi that threaten health, i.e., *Colletotrichum* (p < 0.05) and *Clariereaedia* (p < 0.05). In addition to these changes, some enzymes including *Arabinose-5-phosphate isomerase*, *Quercetin 3′-0-methyltransferase* and *Amylosucrase* were found to be significantly altered (p < 0.01) after *Cryptosporidium* infection using fungal function prediction analysis. This study also focused on the *Cryptosporidium* infection in Tibetan pigs in terms of gut fungal diversity, composition, and the abundance of enzyme. It is providing a better understanding of *Cryptosporidium* infection in Tibetan pigs and insights for further development of therapeutics against *Cryptosporidium* from the gut fungal perspective.

Keywords: *Sus domesticus*, Tibetan pig, *Cryptosporidium*, Gut fungi, Enzyme, Microbiota

How to cite this:

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

Tibetan pigs are inhabitant of the cold Tibetan plateau in China, which is approximately 3,000 meters above sea level (Li et al., 2016; Wang et al., 2021). These indigenous pigs are economically important to farmers because they have flavorsome, high-quality meat with more protein and a higher percentage of lean meat in the carcass (Li et al., 2018; Guo et al., 2022). However, Tibetan pigs are susceptible to Cryptosporidium due to malnutrition, diet management and hostile environments. In addition, similar cases of Cryptosporidium infection in Tibetan pigs and yaks have been reported, as evidenced by epidemiological results (Chen et al., 2023). Therefore, it is necessary to better understand Cryptosporidium from new points of view.

Cryptosporidium are one of the main causative agents of diarrhea and life-threatening diseases in infants and elderly animals, which further complicating public health protection (Striepen, 2013; Ijaz et al., 2021). Unfortunately, there is no effective vaccine to prevent this disease in animals. At younger age, Cryptosporidium is the second leading cause of severe diarrhea and death in animals (Thathaisong et al., 2020). Pigs are reservoir hosts of Cryptosporidium while Cryptosporidium suis and Cryptosporidium scrofarum are abundant in pigs and humans (Wang et al., 2022; Lan et al., 2021). The clinical course usually ranges from diarrhea to death, associated with growth retardation. This suggests that Cryptosporidium infection not only causes economic losses, but also poses a public health threat (Qi et al., 2020; Lv et al., 2022). Therefore, a safe and effective strategy to prevent and control Cryptosporidium infection is urgently needed.

The gut is the primary organ of elimination and ingestion of nutrients, and is home to trillions of microbes (Chen et al., 2021; Chen, 2022; Wolff et al., 2023). Alteration of the gut microbiota can always be associated with diseases such as diarrhea, affecting both proximal and distal tissues (Cryan and Dinan, 2012; Dinan and Cryan, 2015). Previous studies have shown the relation between gastrointestinal disorders and intestinal microbiota (Singh et al., 2015; Jiang et al., 2017; He et al., 2022). However, the most of studies have shown the importance of intestinal bacteria, but the link between host health and intestinal fungi has rarely been explored.

Fungi, which help to regulate immunity and improve gut microbiota balance, may be altered in diversity and composition by comorbidity (Coker et al., 2019). There has been significant disruption of gut fungal species in patients with a range of diseases, including diarrhea and colorectal cancer (Sokol et al., 2017; Arfken et al., 2020). The intestinal tract is colonized by fungi in humans and animals immediately after birth (Bliss et al., 2008) and fungi can be acquired vertically, horizontally or in the environment (Liggenstoffer et al., 2010; Ward et al., 2018). In short, fungi form a stable ecosystem in the digestive tract that contributes to disease prevention, metabolism and intestinal homeostasis (Zhan et al., 2020). Therefore, we hypothesize that cryptosporidium infection in Tibetan pigs may be related to changes in gut fungi.

To our knowledge, there are no studies on the relationship between gut fungi and Cryptosporidium infection in Tibetan pigs. Therefore, it is necessary to study the connection between the gut fungi and Cryptosporidium. The aim of this study was to assess the devastating effects of Cryptosporidium on Tibetan pigs living in mountainous areas, which can help uncover the link between gut fungi and Cryptosporidium infection.

Material and Methods

Sample collection
All experimental samples were collected from pigs living on the Tibetan plateau (altitude >2000m) and detailed records of sex, age and feeding records were maintained. In our previous molecular epidemiological study of Cryptosporidium in Tibetan pigs, we collected fecal samples from both diarrheal and healthy Tibetan pigs. A total of 100 samples were collected from a farm in Nyingchi, Tibet, including 50 diarrhea samples and 50 healthy pig’s samples, followed by assessment and diagnosis of the condition of Tibetan pigs by a professional veterinarian (Li et al., 2017). Referring to the Felice et al (De Felice et al., 2020), we discovered and analyzed diarrhea samples in the feces of Tibetan pigs and found that some of the samples were infected with Cryptosporidium. Additionally, Cryptosporidium positive and negative samples were stored at -80°C for further analysis. Four positive and four healthy Cryptosporidium feces were selected from samples from earlier studies.

ITS gene amplification and sequencing

Fungal genomic DNA from feces of Tibetan Pigs was extracted using the QIAamp DNA Mini kit (QIAGEN,
Germany) according to the manufacturer’s recommendations, followed by DNA concentration detection by Namedrop, USA and agarose gel electrophoresis (0.8%). The ITS2 region was amplified by PCR, and ITS gene primers were synthesized according to the method described by Li et al. (2021). PCR target fragments were evaluated and recovered using 2% agarose gel electrophoresis and AxyPrep DNA kit (KkuozhePrep, USA). Subsequently, the PCR-recovered products were subjected to fluorescence quantification using Quant-iT PicoGreen dsDNA Assay Kit and the Microplate reader (BioTek, FLx800). Based on the fluorescence quantification results, the acceptable recovered PCR products were blended to the corresponding ratio based on the sequencing volume requirements of each sample. The obtained certified PCR products are then used to create sequencing libraries using NEB Next Ultra DNA Library (Illumina, USA) preparation kit in accordance with the manufacturer’s recommendations. Prior to sequencing, the libraries were quality-checked on Agilent Bioanalyzer using the Agilent High Sensitivity DNA Kit, with eligible libraries having a single peak and being free of junctions. Finally, eligible libraries were sequenced on the Illumina NovaSeq platform after being diluted and mixed with a corresponding ratio, as required by the sequencing standard.

Fungal bioinformatics analysis
The raw sequence data were screened to provide reliable data for bioinformatics analysis. The query sequences contained chimeras, mismatched primers and ineligible sequences (<200 bp) were discarded by the QIIME software. The operational taxonomic units (OTUs) were classified and clustered according to the 97% similarity of the sequence. Meanwhile, the representative sequences were taxonomically identified and phylogenetic analyzed. In addition, fungal diversity was inferred from alpha analysis and differences in fungal composition between groups were inferred from beta analysis. Alpha analysis metrics, including the Shannon diversity index, ACE diversity index, and the Chao1 richness estimator, were calculated based on the OTU distribution in each sample. Beta analysis was performed by calculating weighted and unweighted UniFrac distances to assess differences and similarities between samples. To further detect the change in the gut fungal composition, other beta analysis indices including (nonmetric multidimensional scaling (NMDS) and Principal Component Analysis (PCA) were performed to reveal the fungal variation. The differences in species abundance composition between groups and the search for marker species were further determined by clustering, and modeling tools combined with DESeq2 analysis. PLS-DA (Partial least squares discriminant analysis) is a recognized and effective tool for revealing relationships between microbial communities and samples. Co-occurrence analysis was performed by calculating Spearman rank correlations between dominant taxa, and correlations between groups were plotted using network maps. Additionally, the KEGG Ortholog (KO) were predicted using the PICRUSt annotation of the ENZYME database. The parameters used in the biochemical analysis were all set as standard conditions.

Statistical analysis
We used the SPSS (v 23.0) and GraphPad Prism (V 9.0) software to perform data analyses and plot images, respectively. A p-value < 0.05 indicated a significant difference.

Results

Data collection and analysis
A total of 1042 fungal OTUs were identified based on a 97% nucleotide sequence similarity after filtering and taxonomic assignment. The number of core OTUs of H and INF groups was 678 and 416 respectively (Figure 1), of which 52 were common OTUs between the two groups (Figure 2D). Furthermore, the scarcity curves were saturated and broad, indicating that all fungal species were identified in the (Figure 2A-C).
Figure-1. Analysis of OTUs composition and distribution. H1, H2, H3 and H4 belong to the H group; INF1, INF2, INF3 and INF4 belong to the INF group. (a) Sequence number percent of samples at different levels i.e., Kingdom, phylum, class, order, family, genus, species; (b) The number of OTUs of samples at different levels, i.e., Kingdom, phylum, class, order, family, genus, species; (c) The number of taxas of samples at different levels, i.e., Kingdom, phylum, class, order, family, genus, species.

Figure-2. The rarefaction and rank abundance curves. H1, H2, H3 and H4 belong to the H group; INF1, INF2, INF3 and INF4 belong to the INF group. (a) The rank abundance curve was used to describe the sequencing evenness; (b) The observed features were reflected by the sequencing curve; (c) The fungal rarefaction curve was used to assess the sequencing depth; (d) Venn diagrams were used to reflect the gut fungal OTU distribution.
Wang Lei et al.

Figure 3. (a-b) The alpha analysis indices indicated the diversity and richness of gut fungi. (a) The Chao 1 was used to reflect the gut fungal diversity; (b) The Shannon index was used to characterize the gut fungal diversity; (c) The Simpson index was used to characterize the gut fungal diversity; (d-g) The Beta analysis includes NMDS, PCA and PCoA. (d) The NMDS analysis; (e) The PCA analysis; (f) The weighted unifrac Principal coordinate (PCoA) analysis; (g) The unweighted unifrac PCoA analysis.

The effect of Cryptosporidium infection on the gut fungal diversity

To investigate the adverse effects of Cryptosporidium infection on Tibetan pigs, we compared and analyzed the diversity and composition of gut fungi in groups H and INF using ITS gene sequencing. Alpha indices including ACE, Simpson and Shannon were used to characterize intestinal fungal diversity. The results showed that there was no significant difference in intestinal fungal diversity between groups INF and H \((p > 0.05)\) (Figure 3A-C). Moreover, the PCoA based on weighted Unifrac distance analysis generated scattered data points in the map (Figure 3F), of which the data points in the H group showed a similar tendency of partially overlap with the INF group. In turn, the specimens in group IFN were clearly separated from those in group H by unweighted Unifrac distance analysis, indicating the significant difference in gut fungal profile between the groups (Figure 3G). Similar results were found in the NMDA (Figure 3D) and PCA analyses (Figure 3E), with individuals in the H group being closer together but far apart from those in the INF group. The above results all indicate that the composition and fungal profile of the intestine were significantly affected by Cryptosporidium infection in Tibetan pigs.

Taxonomic composition of gut fungal community

A total of 2 phyla, 5 classes, 9 orders, 10 families, and 13 genera were observed in groups H and INF (Figure 4). At the phylum level, Anthophyta \((H=22.52\%,\ INF=25.31\%)\) and Ascomycota \((H=12.64\%,\ INF=9.4\%)\) were the most abundant phyla in groups H and INF, accounting for more than 34% fungi taxonomic (Figure 4A). At the class level, the H group of Pseudomycetes \((H=15.36\%,\ INF=5.05\%)\), Sordariomycetes \((H=10\%,\ INF=8.94\%)\) and Eurotiomycetes \((H=2.64\%,\ INF=0.70\%)\) had higher abundance compared to the INF group (Figure 4B). At the order level, Nectriaceae \((H=9.94\%,\ INF=8.86\%)\), Poaceae \((H=1.14\%,\ INF=0.35\%)\), Aspergillaceae \((H=2.64\%,\ INF=0.50\%)\) and Achariaceae \((H=0.17\%,\ INF=0.28\%)\) were the main orders in two groups (Figure 4C). Equally important, at the family level, Nectriaceae \((H=9.94\%,\ INF=8.86\%)\), Poaceae \((H=1.14\%,\ INF=0.35\%)\), and Aspergillaceae...
Wang Lei et al. (H=2.64%, INF=0.48%) were represented with higher abundance in H group compared with INF group (Figure 4D). Besides above-mentioned variants, at the genus level, *Ilyonectria* (H=9.33%, INF=8.24%) and *Festuca* (H=1.0%, INF=10.10%) were dominant in two groups. Compared with group INF, other fungal genera such as *Penicillium* (H=2.64%, INF=0.48%), *Xenoacremonium* (H=22%, INF=0), *Trichosanthes* (H=0.07%, INF=0) and *Syspastospora* (H=0.04%, INF=0.02%) were represented with a higher abundance in H group related to health status (Figure 4E).

Significantly, we found similar alterations in the grouping heat map. At the phylum level, *Anthophyta* and *Ascomycota* were enriched in the H and INF groups, while *Ascomycota* was higher in the H group compared to the INF group (Figure 5A). At the class level, *Eurotiomycetes, Eudicotyledonae, and Sordariomycetes* were identified in high abundance in Group H, while *Leotiomycetes* and *Monocotyledonae* were the most dominant fungi in the INF group (Figure 5B). At the level of order, strong abundance of *Brassicales, Cucurbitales, Fabales* and *Eurotiales* were detected in group H.

![Figure 4](image_url)

Figure 4. The gut fungal abundances for different levels of groups are shown in Grouping percentage pile bar chart. (a) The abundance and community of gut fungi at the phylum level; (b) The abundance and community of gut fungi at the class level; (c) The abundance and community of gut fungi at the order level; (d) The abundance and community of gut fungi at the family level; (e) The abundance and community of gut fungi at the genus level.
In the INF group, on the other hand, *Glomerellales*, *Poales*, *Malpighiales*, and *Helotiales* were predominant (Figure 5C). At the level of family, *Brassicaceae*, *Cucurbitaceae*, *Fabaceae*, and *Aspergillaceae* were more abundant in the H group. In the INF group, however, we did not even find the *Cucurbitaceae* and *Brassicaceae*, while the *Glomerellaceae*, *Poaceae*, *Achariaceae* and *Sclerotiniaceae* were well represented in the INF group with high abundances. (Figure 5D). At the genus level, the most abundant genera of *Syspastospora*, *Ilyonectria*, *Glycyrrhiza*, *Penicillium*, *Trichosanthes* and *Xenoacremonium* were detected in the H group. Conversely, in the INF group, *Xenoacremonium* and *Trichosanthes* were absent, while *Colletotrichum*, *Festuca*, *Astragalus*, *Cynosurus*, *Hydnocarpus*, *Phleum*, and *Clarireedia* were the dominant genera (Figure 5E).

Variation in the composition of intestinal fungi

Apparent variations in gut fungi at different levels are shown in Figure 6. At the class level (Figure 6A), *Leotiomycetes* was represented by a lower abundance in the H group compared to the INF group (*p* < 0.05). At the order level (Figure 6C), the abundance of *Eurotiales* was significantly higher in H group than in the INF group (*p* < 0.05). At the family level (Figure 6B), it was found that the abundance of *Aspergillaceae* in the H group differed significantly from that in the INF group, of which *Aspergillaceae* decreased significantly under the effect of *Cryptosporidium* infection (*p* < 0.05). Similarly, a comparison between the INF and H groups at the genus level (Figure 6E), revealed a significant decrease in the abundance of *Penicillium* (*p* < 0.05) and *Xenoacremonium* (*p* < 0.05). In addition, we found other significant differences between individual results. *Trichosanthes* and *Glycyrrhiza* were present at low abundances in the H group, but were absent in the INF group (Figure 6D).

Figure-5. The main fungi in groups H and INF are shown in the heat map of Group clustering at different levels. (a) At the phylum level; (b) At the class level; (c) At the order level; (d) At the family level; (e) At the genus level.
Figure-6. Evident changes of gut fungi under the Cryptosporidium infection in Tibetan pigs. Moreover, based on the DESeq2 analysis, there are some species that are significantly different between groups H and INF at different levels. (a) the class level; (b) the family level; (c) the order level; (d) the phylum level; (e) the genus level.

Correlation network analysis

The correlation between the abundance of different fungal genera in the intestine of Tibetan pigs was determined using Spearman correlation matrix. 5 nodes and 3 edges were found in the fungal network (Figure 7A). The results of the Spearman correlation analysis showed that *Penicillium* was positively associated with *Cynosurus* (0.08) and *Colletotrichum* (0.233), *Cynosurus* was positively associated with *Penicillium* (0.08) and *Colletotrichum* (0.76), *Astragalus* was positively associated with *Clarierea* (0.76).

The metabolism effect of Cryptosporidium infection on Tibetan pigs

To further investigate the association between Cryptosporidium infection and intestinal fungi, we compared and determined the metabolic difference using fungal function prediction, which identified 856 enzymes. Some enzymes including *Arabinose-5-phosphate isomerase*, *Quercetin 3-O-methyltransferase* and *Amylosucrase* were significantly altered after Cryptosporidium infection in Tibetan pigs (Figure 7B). The enzyme pathways showed increased enzyme activity in individuals in the INF group compared to those in the H group, indicating significant changes in enzyme activity and abundance under the Cryptosporidium infection.

Discussion

Diarrhea is a common clinical condition and alteration in the microbiota population has been identified as the main cause affecting both humans and animals (Xi et al., 2021). The gut microflora consists of trillions of different fungi, bacteria and viruses. All of these worked together to significantly benefit the host in terms of digestion, metabolism, development and immunological regulations (Bisgaard et al., 2014; Round and Palm, 2018; Ruff et al., 2020). In addition, dysfunctional microbiota balance is commonly observed in a variety of disorders including diarrhea,
Asian J Agric & Biol. xxxx(x).

Wang Lei et al.

obesity, and diabetes (Bharti and Grimm, 2021; Li et al., 2021; Peterson et al., 2021). High throughput sequencing is a technology with a high level of efficiency in using the microbiota, and is widely used to accurately identify different microbial species. Intestinal fungi are essential to host health and growth, contributing to the host’s immune system and improving the intestinal barrier. The combination of ITS amplification and DESeqs analysis made it possible to clearly investigate the connection between Cryptosporidium and gut fungi. Previous studies have always focused on the relationship between gut bacteria and Cryptosporidium infection, and more importantly, the animal studies have always focused mice (Aboelsoued et al., 2022) and cattle (Gong et al., 2017; Tarekegn et al., 2021). Information on fungi associated with Cryptosporidium infection in Tibetan pigs is very limited. In this study, ITS sequencing was able to characterize the changes in intestinal fungal spectrum, composition and properties after Cryptosporidium infection in Tibetan pigs. Furthermore, analysis of Spearman’s correlation matrix and prediction of fungal function revealed differences in fungal correlation and enzymatic activity, respectively. The research showed the relation between Cryptosporidium infection and intestinal fungi in Tibetan pigs from a new perspective.

It was found that the alpha diversity indices in the H and INF groups are not significantly different. In Li’s report (Li et al., 2021), gut fungal diversity in diarrheal giraffes was similar to that in healthy giraffes, consistent with our findings. It is interesting to note that Cryptosporidium infection has significantly reduced bacterial diversity in intestine. In Chen’s report (Chen et al., 2023), alpha diversity indices (including Chao1, Faith-pd and observed traits) were lower in Cryptosporidium-infected pigs then in healthy pigs. This may be due to that there were so many types of bacteria that were altered by diarrhea. Although there was no significant change in intestinal fungal diversity between groups H and INF, the proportion of fungi did change. Results of PCoA, NMDS and PCA showed that individuals in the H group apparently separated from those in the INF group, suggesting that Cryptosporidium infection altered the composition and profile of gut fungi in Tibetan pigs. The composition of gut fungi varied between taxa at all levels. Groups H and INF contained a high relative abundance of Anthophyta and Ascomycota. Anthophyta originate in the environment and are essential for gut health. Ascomycota is the largest fungal phyla and contains healthy species that contribute to the environment and the economy, such as mutualists (Samson et al., 2014). In addition, we found significant changes in the abundance of Leotiomycetes, Aspergillaceae, Eurotiales, Penicillium and Xenoacremonium between the H and INF groups. We found a lower abundance of Aspergillus, Xenoacremonium, and Penicillium in Cryptosporidium infected pigs compared to healthy pigs, suggesting that Cryptosporidium infection causes an imbalance of gut fungi by reducing the abundance of main beneficial fungi. Aspergillus encompasses a variety of species with metabolic, physiological and phylogenetic characteristics closely related to human or animal life (Park et al., 2019). It has been used in the food fermentation industry for more than two thousand years. At the same time, the Aspergillaceae were often considered cell factories with excellent properties for producing organic acids and other secondary metabolites (Guevara-Suarez et al., 2020). Equally important, Penicillium is among the most important fungal genera that have contributed to natural ecosystems, agriculture and biotechnology. Penicillium is crucial for the ripening process, and is considered a safe additive in the food industry (Weber, 2004). The best-known secondary metabolite of penicillin is produced by Penicillium, which saved countless lives during World War II and continues to play an irreplaceable role in medicine (Malekinejad and Fink-Gremmels, 2020). Similarly, the secondary metabolites of Xenoacremonium have shown inhibitory effects on tumor cells and have shown promising therapeutic effects in clinical practice. At the order level, we found a lower abundance of Eurotiales in the INF group compared to the H group. Galanopoulou et al. (2014) reported that Eurotiales play an important role in environmental processes, many of which are of commercial and health importance, such as the production of penicillin and citric acid. Other variants have also shown adverse effects of Cryptosporidium infection. Glycyrrhiza has been used in medicine for thousands of years and exhibits strong anti-inflammatory and allergic activities (Feng et al., 2021). Glycyrrhiza has proven successful in treating ulcers (Martin et al., 2008). In addition, five conjugated linolenic acids (CLNA) have been identified in Trichosans, contributing to health promotion and having potential for clinical application. In turn, no Glycyrrhiza and Trichosans were found in the INF group, which we suspect is the
most likely due to Cryptosporidium infection causing an imbalance in the gut fungal profile and a reduction in beneficial fungi. It is significant and interesting that both Colletotrichum and Clarireedia were very abundant in the INF group. Colletotrichum which includes more than 200 species, is considered one of the ten most pathogenic fungi, causes huge financial damage to crops. Due to its virulence and health hazard, Colletotrichum is considered a model pathogen for genetic and biochemical physiology (Casas et al., 2021). In addition, Clarireedia form a diverse group of species. Clarireedia spp, which is considered one of the most destructive and economically destructive fungi, is the pathogen of dollar spots, causing large economic losses and health risks (Liu et al., 2023).

The intestinal microbiota forms a stable ecosystem and plays an important role in enzyme activity, disease prevention and intestinal homeostasis (Gagliardi et al., 2018; Alvarez-Mercado and Plaza-Diaz, 2022). Cryptosporidium infection not only altered the gut fungal profile and proportions, but also fungal function in Tibetan pigs. Amylosucrase \((p < 0.05)\), Arabinose-5-phosphate isomerase \((p < 0.05)\) and Quercetin 3-O-methyltransferase \((p < 0.05)\) were significantly different between groups H and INF. Amylosucrase own the ability to utilize abundant biomasses to provide energy. We found a higher abundance of Amylosucrase in the INF group, which is the most likely due to the fact that Cryptosporidium also requires the energy provided by the Amylosucrase function. In the study, the level of Arabinose - 5-phosphate isomerase was higher in the INF group than in the H group. Arabinose-5-phosphate isomerase has long been recognized as an anti-bacterial design target, which could explain the reduced diversity of gut bacteria in the Cryptosporidium infection (Chen et al., 2023). In view of the phenomenon of change in enzyme activity, we speculate that gut fungi may play an essential role in metabolism of Tibetan pigs.

Conclusion

In summary, a total of 2 phyla, 5 classes, 9 orders, 10 families and 13 genera were detected in the H and INF groups. Cryptosporidium has induced significant changes in the proportions and metabolism of intestinal fungi in Tibetan pigs. The profile of fungi varied between taxa at the phylum, class, order, family and genus levels, in which the abundance of Leotiomycetes \((p < 0.05)\), Aspergillaceae \((p < 0.05)\), Penicillium \((p < 0.05)\), Xenoacremonium \((p < 0.05)\) and Eurotiales \((p < 0.05)\) were significantly reduced under Cryptosporidium infection. The above mentioned fungi were beneficial to the health of animals, human beings or environmental processes. Conversely, the highly abundant genera of Colletotrichum and Clarireedia were enriched in the INF group. Both Colletotrichum and Clarireedia are considered as destructive pathogenic fungi, causing significant economic losses and health threats. The results showed significant variability in the composition and distribution of fungi in Tibetan pigs infected with Cryptosporidium, characterized by a significant decrease in the abundance of beneficial fungi and an increase in the abundance of disease-causing fungi that threaten health. In addition to changes in fungal composition of Cryptosporidium infected Tibetan pigs, the enzyme activity of Cryptosporidium infection in Tibetan pigs was also significantly different, such as increased abundance of Amylosucrase \((p < 0.05)\), Arabinose-5-phosphate isomerase \((p < 0.05)\) and Quercetin 3-O-methyltransferase \((p < 0.05)\). Simultaneously, Spearman correlation analysis indicted that Penicillium was positively associated with Cynosurus \((0.08)\) and Colletotrichum \((0.233)\), Cynosurus was positively related to Penicillium \((0.08)\) and Colletotrichum \((0.76)\), Astragalus was positively with Clarireedia \((0.76)\), which provided another perspective for understanding the associations among taxa and samples. Our findings shed light on the alteration of the fungi in both healthy and Cryptosporidium-infected pigs, as well as providing a new perspective in the identification of Cryptosporidium and involving in details for further development of therapeutics against Cryptosporidium in pigs.

Disclaimer: None.

Conflict of Interest: None.

Source of Funding: This research was funded by National Natural Science Foundation of China, grant number 32102692, Shanxi Key Lab. for modernization of TCMV, grant number SXKL2022004, Natural Science Foundation of Tibet Autonomous Region (General Project), grant number XZ202101ZR0020G.

Acknowledgment:
The authors extend their appreciation to the Deputyship for Research & Innovation, “Ministry
of Education in Saudi Arabia for funding this research (IFKSUOR3-567-2)

Ethical Statement:
The research was reviewed and approved by the Ethics Committee of the Nanjing Agricultural University, China.

Data Availability Statement:
The data in the research are available from the corresponding author on reasonable request.

References

Contribution of Authors

Lei W: Conducted the experiment and wrote first draft of manuscript
Sijia L & Wen Z: Conducted the experiment and collected data
Sun N, Saleem MU, Nazar M, Ataya FS & Kun L: Carried out literature review, wrote and edited manuscript
Hassan MF: Analyzed and interpreted data
Qinghui K: Conceived idea, supervised study and secured funding for research